14 Powerful Ways to Form New Synapses in the Brain

Over the years, I’ve taken several psychiatric drugs, drank too much alcohol, and had numerous concussions – sometimes, all at once. 

In other words, my brain has taken quite the beating. 

Researchers used to think that if you damaged your brain like I did, you simply had to live with it.

But that’s no longer true. 

They now know the brain is plastic and flexible, and it can heal and recover.

You’re not stuck with the brain you have. 

You can actually change and improve it.

One way your brain repairs itself is through a process called synaptogenesis.

Synaptogenesis is the formation of new synapses in the brain.

Synapses are the connecting points between your 100 billion brain cells. You have trillions of synapses in your brain, and your brain cells communicate with one another across them (79). 

The deterioration and loss of synapses is linked to a number of neurodegenerative diseases and mental health disorders, including Alzheimer's disease, depression, poor learning and memory, intellectual impairment and other cognitive deficits (83-87). 

The good news is that researchers now know that synaptogenesis occurs in the brain throughout our entire lives (81-82). 

And there are a number of ways you can support synaptogenesis, promote the formation of new brain synapses and increase brain synapses. 

Below are 15 ways to do that.

Following these strategies can improve your mood, learning, memory and cognition.

Picture of brain and synapses.

1. Omega-3 Fatty Acids, Uridine and Choline

The formation of synapses depends on sufficient brain levels of three key nutrients – uridine, omega-3 fatty acids, and choline. These nutrients are synergistic, and if you take them taken together, they accelerate the formation of new synapses in the brain (66-67, 75-78). 

Unfortunately, most people nowadays don’t get enough of these essential nutrients through their diet because very few foods in the Western diet actually contain them.

In fact, the uridine in food is not bioavailable, and no food has been shown to increase plasma levels of uridine (1).

Picture of salmon and walnuts. Salmon and walnuts and rich in omega-3 fatty acids, which have been shown to form new brain synapses.

That’s why I take a uridine monophosphate supplement sublingually to support the long-term health of my brain. 

At the same time, I take a krill oil supplement and the Optimal Brain supplement, which includes CDP-Choline and Alpha GPC (two high-quality sources of choline). This ensures my brain is getting enough of omega-3 fatty acids and choline.

Several researchers have concluded that supplementing with all three nutrients can increase synaptic formation, increase brain synapses, and improve cognition, learning and memory, particularly in people with Alzheimer's disease (68-74). 

Besides supplementation, I still encourage people to eat foods that contain omega-3 fatty acids and choline. 

The best way to get omega-3 fatty acids from food is by eating more cold-water fish such as salmon, black cod, sablefish, sardines and herring. And the best food sources of choline include grass-fed beef liver and egg yolks. These foods are included in my Free Grocery Shopping Guide for Optimal Brain Health.

Taking uridine, choline and omega-3 fatty acids together can also promote the regeneration of myelin.

 

2. Low Level Laser Therapy

Low-level laser therapy (LLLT), or photobiomodulation, is a treatment that uses low-level (low-power) lasers or light-emitting diodes (LEDs) to stimulate brain cells, helping them function better.

Most doctors don't know about LLLT; but not every doctor.

Man wearing LLLT helmet and using the Vielight device. LLLT and Vielight devices can help form new synapses in the brain.

Dr. Norman Doidge, a physician who teaches at the University of Toronto here in Canada, discusses the amazing effects of LLLT in his book The Brain’s Way of Healing.

One way that LLLT may help the brain is by encouraging synaptogenesis (12-15). 

Researchers have found that LLLT treatment significantly stimulates the synthesis of synapsin-1 (a marker for synaptogenesis) and increases synaptogenesis in the cortex (16-17). 

I previously wrote about my experience with low-level laser therapy here.

I use this device and shine the red and infrared light on my forehead for 5 minutes every day. I also shine it on other parts of my head and on my entire body, including on my thyroid, thymus gland and gut. I experience incredible benefits from doing this.

When I’m travelling, I take this smaller and more convenient device with me and shine it on my forehead.

I’ve also been using the Vielight Neuro Duo, which is a transcranial-intranasal headset with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to try a Vielight device, you can use the coupon code JORDANFALLIS for a 10% discount

Before trying LLLT, I highly recommend reading my full article about it first.

LLLT can also support mitochondria function, reduce brain fog, and increase blood flow to the brain

 

3. Bacopa

Bacopa monniera is an adaptogenic herb with cognitive-enhancing effects.

Several studies show that it improves cognition, learning and memory by strengthening communications between brain cells. Both healthy and elderly people who take the herb experience improved attention, learning and memory (2-5). 

Researchers believe that these improvements are because bacopa increases brain synapses and increases specific neuromolecular mechanisms that encourage and enhance synaptogenesis (18). 

Click here to subscribe

4. Exercise

Exercise is one of the best ways to promote the formation of new synapses.

Researchers have repeatedly found that physical activity encourages synaptogenesis and increases brain synapses (32-33). 

Exercise also increases blood flow to the brain, promotes the regeneration of myelin, and can help reverse brain damage and cognitive decline

So not surprisingly, many brain health experts recommend exercise as their number one piece of advice for optimal brain health.

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

 

5. Magnesium Threonate

Magnesium is a vital mineral that participates in more than 300 biochemical reactions in your body, including neurotransmitter and hormonal activity, which can have a huge effect on your brain function.

Researchers have found that increasing magnesium levels in the brain improves learning and memory by promoting synaptogenesis and increasing brain synapses (25-26). 

One study concluded that magnesium threonate increases the number of synaptic connections between brain cells and boosts the density of synapses (27). 

Magnesium rich foods, including spinach, avocados, bananas, almonds. Magnesium helps the brain form new synapses.

Unfortunately, lot of people are deficient in magnesium today (6-8).

But there are a number of ways you can make sure you’re consuming enough. 

First, make sure you’re eating magnesium-rich foods on a regular basis, including spinach, chard, pumpkin seeds, almonds, avocado, dark chocolate and bananas. These foods are included in my Free Grocery Shopping Guide for Optimal Brain Health.

Epsom salt baths are another great way to increase your body’s intake of magnesium. 

But I also recommend a high-quality magnesium supplement. 

Magnesium threonate is the best form of magnesium for increasing brain magnesium levels and forming new synapses. 

Since most people are deficient, magnesium is one of the three supplements that I think everyone should be taking.

Magnesium can also help repair a leaky blood-brain barrier.

 

6. Intermittent Fasting

Fasting allows your digestive system to take a break and triggers a number of hormones that boost your body’s ability to repair itself.

On most days, I don’t eat breakfast at all, and then "break my fast" by eating my first meal of the day around 2 or 3 p.m. That means I eat all my food for the day within an 8-hour window.

There are many health benefits to doing this.

It can improve mitochondrial function, reduce brain fog, and help protect you from dementia

And researchers have also found that fasting can trigger and enhance synaptogenesis (28-31). 

The best way to start fasting is simply by eating dinner around 6, not eating anything after that before bed, and then eating a regular breakfast the next day. That should give you about 12-14 hours of fasting time. 

 

7. Ginkgo Biloba

Ginkgo Biloba is a plant that has been used in China for thousands of years to treat a number of health problems. It’s one of the top-selling herbal supplements in the world, and it’s even a prescription herb in Germany.

It’s most commonly used to improve brain health because it’s been shown to increase brain blood flow and improve memory and attention in both healthy and unhealthy individuals. It even reduces the risk of dementia and Alzheimer’s disease and may also improve mood and mental energy (34).

Researchers have also discovered that it stimulates synaptogenesis and increases brain synapses (35). 

Ginkgo Biloba is included in the Optimal Brain supplement.

Click here to subscribe

8. Motor Learning

Motor learning is essentially when you learn something new that involves movement.

Complex processes occur in the brain in response to practicing or experiencing the new motor skill.

This results in changes to the central nervous system, which allows you to produce the movement again in the future.

Researchers have found that motor learning triggers synaptogenesis and generates new synapses in the cerebellar cortex of the brain (36-39). 

Some activities that involve motor learning include learning how to play the piano, climbing trees, juggling, and playing table tennis. 

When you engage in these activities, motor learning occurs, and you form new synapses in order to learn and solidify the new skill. 

I have personally used a number of different neuroplasticity exercises that involve motor learning to promote synaptogenesis in my own brain.

 

9. Resveratrol

Picture of grapes. Grapes are rich in resveratrol, an antioxidant than help you form new synapses in your brain.

Resveratrol is a beneficial antioxidant and anti-inflammatory compound found in grapes, red wine, raspberries and dark chocolate.

Resveratrol is known to help prevent the development of neurodegenerative diseases.

And researchers are starting to understand why.

Resveratrol can help restore the integrity of the blood-brain barrier, support your mitochondria, and increase blood flow to the brain.

But it can also increase synaptogenesis.

Research shows the resveratrol promotes and enhances synaptogenesis (23-24). 

Resveratrol is included in Optimal Energy.

 

10. Piracetam

Piracetam is a nootropic (cognitive-enhancing) supplement. It provides a mild boost to brain function and has a long history of being used to treat cognitive impairment in Europe, Asia and South America. 

According to researchers, one way it improves cognition is by enhancing synaptogenesis and increasing brain synapses (9-10). 

One study found that rats treated with piracetam had a higher number of synapses than rats not treated with piracetam (11). 

Phenylpiracetam is an advanced version of piracetam and I found it to be even more effective. It also has impressive anti-anxiety and antidepressant effects.

Both piracetam and phenylpiracetam work best if you take them with a source of choline, either CDP-Choline or Alpha GPC.

Both CDP-Choline and Alpha GPC are included in the Optimal Brain supplement

 

11. Quercetin

Quercetin is a bioflavonoid found in fruits and vegetables. It is one of the most widely consumed flavonoids in the human diet. 

Quercetin has potent antioxidant action and is “neuroactive”, meaning it can affect brain function. 

As a result, it can protect brain cells from oxidative stress and inhibit the pro-inflammatory molecules that are associated with many progressive brain disorders (45-46). 

Researchers have also found that it stimulates synaptogenesis (48). 

Red apples, onions and tomatoes have the high levels of quercetin. But you can also supplement with it if you want. 

It’s interesting to note that quercetin increases the absorption of resveratrol, so it’s a good idea to take them both together if you want to increase synaptogenesis and form new brain synapses (47). 

Click here to subscribe

12. Intranasal Insulin

Insulin is one of the hormones that significantly affects brain function.

It has a number of important functions in the central nervous system, and researchers have found that it passes the blood-brain barrier and acts on insulin receptors directly within the brain.

In a new therapeutic approach, commercially-available insulin (Novalin R) is prepared and added to nasal spray bottles, and sprayed and inhaled through the nose to support brain and mental health.

Intranasal insulin has been reported to significantly enhance learning and memory, increase mental energy, reduce brain fog, improve mood, and lower anxiety and stress levels.

One possible mechanism is by increasing synaptogenesis.

Brain insulin receptors are found primarily in synapses, and insulin signaling contributes to synaptogenesis (19-21). 

And the disruption of insulin action in the brain leads to impaired synaptogenesis (22). 

If you’re interested in learning more about intranasal insulin, I previously wrote a full article about it here.

 

13. Progesterone

Progesterone is a natural steroid and sex hormone involved in the menstrual cycle and pregnancy.

It has a variety of important functions in the body, and even plays an important role in brain function. 

Research shows that progesterone supports the normal development of brain cells and protects them from damage (40).

But many researchers have also found that progesterone promotes synaptogenesis (41-43). 

In addition to its role as a natural hormone, progesterone can be taken as a medication, usually by women during menopause as part of their hormone replacement therapy. 

 

14. Antioxidant Nutrients

Some nutrients have antioxidant effects in the body, and not consuming enough of them can reduce your rate of synaptogenesis. 

Research shows that “synaptic membrane synthesis” depends on sufficient dietary intake of Vitamin C, Vitamin E, and the mineral selenium (64). 

A bunch of antioxidant-rich fruits and vegetables in heart-shaped bowls. Antioxidants can helps the brain form new synaptic connections.

One study found that synaptogenesis was significantly enhanced by supplementing with omega-3 fatty acids, uridine, Vitamin C, Vitamin E, and selenium. But it wasn’t enhanced as much with omega-3 fatty acids and uridine alone, suggesting that Vitamin C, Vitamin E, and selenium play a key role in synaptogenesis (65). 

I get these antioxidant nutrients from a number of sources. 

In addition to getting Vitamin C from fruits and vegetables, I take at least 500 mg of supplemental Vitamin C every day. At one point, I was actually taking up to 10 grams of Vitamin C every day as an experiment, but that’s not necessary unless you find it really helps you.

For selenium, I make sure I eat brazil nuts regularly, as they are the richest source. But I also take some extra selenium in supplement form.

For Vitamin E, good food sources include almonds, spinach, sweet potatoes, avocados, olive oil, sunflower seeds and butternut squash. It’s also included in the Optimal Antiox supplement.

Besides increasing synaptogenesis, antioxidants can also protect your brain from alcohol and help reverse brain damage

 

15. BONUS: 4 Things to Avoid

It’s not just what you do, but also what you avoid that can impact your rate of synaptogenesis. 

Researchers have found that certain compounds can impair synaptogenesis and inhibit the formation of new synapses in the brain. 

So besides trying to implement the 14 steps above, you should also try to avoid:

  • Bisphenol A – This compound is found in plastic bottles and containers, food and beverage cans, and other common consumer products, such as CDs, DVDs and sales receipts. Researchers have found that it impairs synaptogenesis in the brain (49). That’s why I recommend you only eat and drink out of glass, ceramic and stainless steel. Avoid all canned food and plastic containers. BPA-free plastic isn’t much better for you and can still disrupt hormonal health.

  • Lead – Lead is a heavy metal that can accumulate in the body and negatively affect brain function. Research shows that lead exposure can interfere with the formation of brain synapses (55-59). So it’s definitely a good idea to reduce your exposure to sources of lead. One way is by using an infrared sauna regularly.

  • Gabapentin – Gabapentin is a medication used to treat epilepsy, neuropathic pain, hot flashes, and restless legs syndrome. Researchers have found that it halts the formation of new synapses (80).

  • StressChronic stress decreases synaptogenesis and decreases the number of synapse connections (88-89). Here are 20 ways to lower cortisol, your body’s main stress hormone. These two biofeedback devices are my favourite ways to reduce stress.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011061/

(2) https://www.ncbi.nlm.nih.gov/pubmed/20590480

(3) https://www.ncbi.nlm.nih.gov/pubmed/18611150

(4) https://www.ncbi.nlm.nih.gov/pubmed/12093601

(5) https://www.ncbi.nlm.nih.gov/pubmed/18683852

(6) http://www.tandfonline.com/doi/abs/10.1080/00048670802534408

(7) http://www.ncbi.nlm.nih.gov/pubmed/10746516

(8) http://www.ncbi.nlm.nih.gov/pubmed/9861593

(9) https://www.ncbi.nlm.nih.gov/pubmed/17710536/

(10) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944646/

(11) https://goo.gl/cq2MxB

(12) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066074/

(13) https://www.ncbi.nlm.nih.gov/pubmed/29131369

(14) http://iopscience.iop.org/article/10.1088/2040-8986/19/1/013003/meta

(15) https://goo.gl/i6XxYc

(16) http://www.ncbi.nlm.nih.gov/pubmed/25196192

(17) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379854/

(18) https://www.ncbi.nlm.nih.gov/pubmed/27692172

(19) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260944/

(20) https://www.ncbi.nlm.nih.gov/pubmed/18549783/

(21) https://www.ncbi.nlm.nih.gov/pubmed/19026743/

(22) http://diabetes.diabetesjournals.org/content/63/7/2232

(23) https://www.ncbi.nlm.nih.gov/pubmed/28957797

(24) https://www.karger.com/Article/Abstract/481611

(25) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172865/

(26) https://www.ncbi.nlm.nih.gov/pubmed/20152124/

(27) https://goo.gl/FE9Gsh

(28) https://www.ncbi.nlm.nih.gov/pubmed/22325203

(29) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278709/

(30) http://www.intermittentfaster.com/intermittent-fasting-science/

(31) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2622429/

(32) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865437/

(33) https://www.ncbi.nlm.nih.gov/pubmed/23973748

(34) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679686/

(35) https://www.ncbi.nlm.nih.gov/pubmed/19661619

(36) http://www.pnas.org/content/87/14/5568

(37) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC54366/

(38) http://www.ncbi.nlm.nih.gov/pubmed/11749086

(39) http://www.ncbi.nlm.nih.gov/pubmed/24304717

(40) https://www.ncbi.nlm.nih.gov/pubmed/10833057

(41) https://www.ncbi.nlm.nih.gov/pubmed/21308798

(42) https://www.ncbi.nlm.nih.gov/pubmed/11487645

(43) https://www.ncbi.nlm.nih.gov/pubmed/18308850

(44) http://online.liebertpub.com/doi/abs/10.1089/rej.2011.1170

(45) https://www.ncbi.nlm.nih.gov/pubmed/15319809

(46) https://www.karger.com/Article/Abstract/72357

(47) https://www.ncbi.nlm.nih.gov/pubmed/25669932

(48) https://www.ncbi.nlm.nih.gov/pubmed/19661619

(49) https://www.ncbi.nlm.nih.gov/pubmed/18048497

(50) https://en.wikipedia.org/wiki/Synaptogenesis

(51) https://goo.gl/a9KtYe

(52) https://www.sciencedirect.com/science/article/pii/S0005273603000245

(53) http://www2.cnrs.fr/en/201.htm

(54) https://goo.gl/m9eqHg

(55) https://goo.gl/BnJM77

(56) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084981/

(57) https://www.ncbi.nlm.nih.gov/m/pubmed/21192972/

(58) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049857/

(59) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076195/

(60) https://en.wikipedia.org/wiki/Synaptogenesis

(61) https://www.sciencedirect.com/science/article/pii/S0005273603000245

(62) https://goo.gl/rzjaXo

(63) https://goo.gl/NRCtsz

(64) https://www.ncbi.nlm.nih.gov/pubmed/28598848

(65) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502840/

(66) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011061/

(67) https://www.ncbi.nlm.nih.gov/pubmed/16055952

(68) https://www.ncbi.nlm.nih.gov/pubmed/19400698

(69) https://www.ncbi.nlm.nih.gov/pubmed/16631143

(70) http://wurtmanlab.mit.edu/static/pdf/1051.pdf

(71) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011061/

(72) https://www.frontiersin.org/articles/10.3389/fnins.2017.00440/full

(73) https://www.ncbi.nlm.nih.gov/pubmed/12399581

(74) https://www.ncbi.nlm.nih.gov/pubmed/16880353

(75) https://www.ncbi.nlm.nih.gov/pubmed/27597963

(76) https://goo.gl/7cH9oD

(77) https://www.ncbi.nlm.nih.gov/pubmed/19262950

(78) https://www.ncbi.nlm.

(79) https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024276/

(80) https://goo.gl/EmQRxy

(81) https://www.sciencedaily.com/releases/2013/10/131010205325.htm

(82) https://goo.gl/UoYf2D

(83) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059649/

(84) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405673/

(85) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405628/

(86) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491115/

(87) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424898/

(88) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432471/

(89) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984887/

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

25 Powerful Ways to Boost the Mitochondria in Your Brain

Picture of several mitochondria.

It’s becoming increasingly clear that chronic mitochondria dysfunction is one of the main underlying factors that contributes to poor brain function and mental illness. 

Mitochondria are unique structures within every cell of your body. You have trillions and trillions of them, making up approximately 10% of your total body weight.

Mitochondria are considered the “powerhouses of the cell,” generating most of the energy in your body by converting nutrition into adenosine-5’- triphosphate (ATP). ATP is your body’s main source of cellular fuel. You are constantly using it, and your brain needs enough of it to work properly (106-107). 

Along with your gut bacteria, your mitochondria are critically important and need to be supported to overcome depression and anxiety, and reach optimal brain and mental health.

Mitochondria are especially abundant in your brain cells and involved in many important biological processes in the brain, including the regulation of free radicals and neurotransmitters.

In fact, monoamine oxidase (MAO), the enzyme responsible for the metabolism of monoamine neurotransmitters, is localized within the outer mitochondrial membrane (91-93). 

So not surprisingly, numerous studies show that there is a correlation between impaired mitochondrial function in the brain and many psychiatric and neurodegenerative diseases, including:

In fact, some researchers are convinced that mitochondrial dysfunction is involved in almost every chronic disease (108-110). 

Mitochondria dysfunction decreases ATP energy production and increases oxidative stress, which are commonly found in the brains of people suffering from brain and mental health disorders.

Cognitive symptoms of mitochondrial dysfunction can also include impairments in attention, executive function and memory (105).

Unfortunately, a number of psychiatric drugs damage the mitochondria and worsen the dysfunction.

But luckily, there are ways to halt and reverse mitochondrial decay.

Below are a number of strategies I’ve used over the years to support my mitochondria.

Supplements and lifestyle changes can improve mitochondrial health by increasing the availability of proteins needed for ATP production.

They also act as antioxidants, assisting the mitochondria in reducing oxidative stress.

Some of the following lifestyle changes and supplements can also increase the number of mitochondria present within the cell.

And you can start using them today to regain optimal brain and mental health.

 

1. Eat Nutrient-Dense, Whole Foods

Dr. Terry Wahls standing in front of her wheelchair.

Eating lots of fresh, nutrient-dense whole foods is one of the most impactful actions you can take to power your mitochondria. 

In order to thrive, your mitochondria need phytonutrients, antioxidants, healthy fats and proteins.

Dr. Terry Wahls, MD, clinical professor of medicine at the University of Iowa, is a leading expert on the relationship between nutrition and mitochondrial health.

She was diagnosed with multiple sclerosis (MS) more than a decade ago but reversed the neurodegenerative brain disease by repairing her mitochondria with an intensive nutritional strategy.

She outlines how she recovered her health in her book The Wahls Protocol

Research on her protocol shows that patients witness a “significant improvement in fatigue” (67). 

She recommends eating six to nine cups of vegetables and fruits every day, including green veggies (kale, spinach), brightly colored vegetables (beets, carrots, peppers), and sulfur-rich veggies (broccoli, cauliflower).

My Free Grocery Shopping Guide for Optimal Brain Health contains a bunch of foods that you should be eating on a regular basis for optimal mitochondrial health. 

Dr. Wahls also has a fascinating TED talk that you can watch if you're interested in learning more. 

 

2. Avoid Certain Foods and Ingredients

Pizza, burgers and fries. Fast, processed food impairs mitochondria health.

Eating poor-quality foods can also wear down your mitochondria. 

Your mitochondria were not designed to deal with our current food environment and lifestyle habits. 

That’s why you should avoid refined sugars, processed flours, industrial oils and trans fats. They can damage your mitochondria and prevent them from properly producing energy.

Dr. Wahls also recommends you avoid all gluten, dairy and soy products for optimal mitochondrial health.

I personally feel much better avoiding them completely as well. 

 

3. Eat More Essential Fats

Healthy fats, including omega-3 fatty acids, help build and strengthen the membranes of your mitochondria. They’ve also been shown to improve mitochondrial function in the brain (5-7). 

That’s why Dr. Wahls recommends eating organic grass-fed beef or wild-caught fish, such as salmon, every day.

Avocados, nuts, seeds, coconut and olive oil are also rich in healthy fats. 

Supplementing with krill oil is another excellent option.

 

4. Exercise

Not surprisingly, exercise strengthens your mitochondria by increasing oxygen and blood flow and activating biochemical pathways that produce new mitochondria (8). 

Runners have more high-functioning mitochondria than non-runners, and strength training and high-intensity interval training also increase the number of mitochondria and improve the efficiency of your existing mitochondria (9, 10).

Many experts recommend exercise for brain health.

Exercise can also increase brain-derived neurotrophic factor (BDNF).

 

5. Low-Level Laser Therapy (LLLT)

Low-level laser therapy (LLLT) is a treatment that uses low-level (low-power) lasers or light-emitting diodes (LEDs) to stimulate brain cells, helping them heal and function better. 

There is strong evidence to suggest that LLLT supports the mitochondria. 

Research shows that LLLT reduces oxidative stress and increases the production of ATP energy in mitochondria (39, 40). 

These mitochondrial benefits have also been seen directly within the brain.

Studies show that LLLT increases mitochondrial activity within brain cells, and this leads to beneficial effects in behaviour (41). 

LLLT treatment has also been shown to increase the number of mitochondria, and mitochondrial oxygen usage, within the brain (42, 43).

I use these two LLLT devices myself at home to support my mitochondria and boost my brain function:

  • Optimal 1000 Brain Photobiomodulation Therapy Light (Combo Red/NIR) - This is a powerful device that shines 660 nm of red light and 850 nm of infrared light. I shine it on my forehead for 5 minutes every day. I also shine it on other parts of my head and on my entire body, including on my thyroid, thymus gland and gut. I experience incredible benefits from doing this.

  • Vielight Neuro Duo – This is a transcranial-intranasal headset with 810 nm of near infrared light that I’ve now been using regularly. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to get this one, you can use the coupon code JORDANFALLIS for a 10% discount. Some research has shown a 20-fold higher efficiency of light delivery to the deep brain through the nose instead of transcranial application (125).

You can learn more about LLLT in this post

You should also limit your exposure to artificial blue light, as excessive blue light exposure can also wear down your mitochondria. You can learn more about the risks of too much blue light in this post

Click here to subscribe

6. Resveratrol

Resveratrol is a beneficial antioxidant compound found in grapes and red wine. 

Not only does it increase BDNF levels, but it also activates the SIRT1 gene. This gene triggers a number of positive biochemical reactions that protect and improve the functioning of your mitochondria. Caloric restriction and intermittent fasting also trigger the SIRT1 gene (11-13).

In 2006, Harvard researchers found that resveratrol increases lifespan by protecting the mitochondria (14).

That’s why I take resveratrol every day and will continue to do so for the rest of my life.

Resveratrol is included in the Optimal Energy supplement.

 

7. Caloric Restriction and Intermittent Fasting

Restricting your calories is one the best actions you can take to improve mitochondrial function.

Studies show that eating less food reduces the demand and damage on your mitochondria. 

But reducing calories is tough to do and absolutely no fun. 

That’s why I fast intermittently instead. 

Fasting activates your mitochondria and triggers autophagy, which is an intracellular process that essentially allows your mitochondria to clean themselves by removing unwanted and damaged debris, proteins and reactive oxygen species (1, 2, 4).

This process has been shown to reduce the risk of cancer, Parkinson’s disease and Alzheimer’s disease (3). 

 

8. Nicotinamide Adenine Dinucleotide (NADH)

NADH is a naturally-occurring compound found in the cells of all living organisms.

It plays a key role in the production of energy within the cell and is highly concentrated within your mitochondria (45). 

Depletion of NADH has been linked to a number of diseases, including depression, chronic fatigue syndrome, Alzheimer’s and Parkinson’s.

But stabilized oral NADH has been shown to improve all of these conditions (46, 47, 48). 

Although I don’t take it anymore, I’ve witnessed a beneficial effect from supplementing with NADH.

LLLT is also known to increase NADH in your mitochondria. 

Check out this article for other ways to increase NAD.

 

9. Ketogenic Dieting

A ketogenic diet is a very low-carb diet. 

When you restrict carbohydrate-rich foods, your body enters ketosis.

Ketosis is a metabolic state in which your body and brain run on fatty acids and “ketones” instead of glucose (36).

Ketones are an alternative source of energy for your brain cells and they support your mitochondria. 

When your mitochondria are dysfunctional, following a ketogenic diet can be an effective strategy to fuel the mitochondria. 

When mitochondria are fueled by ketones instead of glucose, their ability to produce ATP is enhanced and free-radical byproducts are reduced.
— Dr. Jong Rho, MD, Professor of Pediatrics and Clinical Neurology at the Alberta Children’s Hospital

Ketogenic diets may help treat many different brain and mental health diseases including Alzheimer’s, Parkinson’s, epilepsy and autism. 

Exogenous ketones can also help you get into ketosis and experience the mitochondrial-boosting effects of ketones very quickly.

 

10. B Vitamins

B vitamins play an essential role in maintaining mitochondrial function.

In fact, your mitochondria will be compromised if you have a deficiency of any B vitamin (37). 

Deficiency is more likely if you take certain medications

Vitamin B1, B2, B3, B5, B6 and B12 are all included in the Optimal Energy supplement for this reason.

Click here to subscribe

11. Ribose

Ribose is a five carbon sugar created naturally by your body.

Even though it’s a sugar, research suggests it does not raise blood sugar levels.

Instead, your body stores it in the mitochondria (49, 50). 

Ribose is used by the mitochondria to produce ATP and if you don’t have enough, you’ll experience low energy (51). 

Chronic stress can deplete ribose, and certain conditions have been linked to chronic ribose deficiency, including depression and chronic fatigue syndrome.

That’s why I recommend people supplement with ribose if they struggle with these disorders because it can help reduce mental and physical lethargy (52, 53).

Ribose is also included in Optimal Energy.

 

12. Coenzyme Q10 (CoQ10)

Coenzyme Q10 (CoQ10) is an antioxidant molecule found in every cell of your body.

It’s particularly concentrated in the mitochondria, playing a key role in the production of energy.

It also protects the mitochondria from oxidative damage. 

Without CoQ10, your body cannot synthesize ATP because CoQ10 is an essential component of the mitochondrial electron transport chain.

Many doctors are unaware that CoQ10 is an excellent treatment for many brain health issues, including depression, chronic fatigue syndrome, and Alzheimer’s disease

Low levels of CoQ10 can cause brain fog, mental fatigue, difficulty concentrating, memory lapses, depression and irritability (68-70). 

Researchers have found that CoQ10 levels are significantly lower in the depressed patients (71). 

Unfortunately, chronic oxidative stress and medications can further deplete CoQ10

But supplementing with CoQ10 can increase your mitochondrial energy production and reduce symptoms of depression and chronic fatigue (71). 

Food sources with high natural concentrations of CoQ10 include organic red palm oil and grass-fed beef heart (72, 73). 

But supplementing with it will give you a more significant mitochondrial boost.

 

13. Pyrroloquinoline quinone (PQQ)

Pyrroloquinoline quinone (PQQ) is a vitamin-like enzyme and potent antioxidant found in plant foods.

It has a wide range of brain health and mitochondrial benefits.

It’s been shown to preserve and enhance memory, attention, and cognition by protecting the mitochondria from oxidative damage.

It also promotes the growth of new mitochondria in the brain (56-59). 

Since it helps grow new mitochondria, it may help you if you suffer from depression, since fewer mitochondria have been found in people with depression (63). 

Reactive nitrogen species (RNS) and reactive oxygen species (ROS) cause severe stress on brain cells and mitochondria.

PQQ has also been shown to suppress RNS and ROS (60-62). 

Researchers have also found that supplemental PQQ can be neuroprotective by increasing mitochondrial activity levels (64-66). 

I personally never really noticed much of anything from PQQ. So I don’t take it anymore and didn’t include it in Optimal Energy.

 

14. Magnesium

Magnesium is a vital mineral within your body.

Mitochondria are considered magnesium “storage units” because they hold onto a lot of your body’s magnesium. 

Magnesium also protects the mitochondria and plays a role in the production and transfer of ATP within the mitochondria.

And research shows that if you have a deficiency in magnesium, your brain cells will have fewer mitochondria, and they will be less healthy (54, 55). 

This is just another reason to supplement with magnesium every day.

 
Scientific representation of brain and brain blood flow.

Carnitine is an amino acid that improves mitochondrial activity and plays an important role in energy production.

It’s known to transport fatty acids directly into the mitochondria of your brain cells. 

It’s also required to produce ATP and deficiencies are associated with reduced mitochondrial function in the brain (74). 

Supplementing with carnitine makes it easier for fatty acids to cross your blood-brain barrier and nourish the mitochondria within your brain. This can improve your mood, memory and energy levels.

Several studies show that carnitine eases depressive symptoms and improves quality of life in patients with chronic depression (75-78). 

And individuals with autism often have reduced levels of carnitine within their brain (79). 

Carnitine is synergistic with Alpha Lipoic Acid (ALA), meaning that when you take them together, they are more effective at supporting the mitochondria in your brain.

ALA is a mitochondrial enzyme and antioxidant. It is fat soluble and can easily cross your blood-brain barrier.

It’s been shown to improve cognition by reducing oxidative stress in the brain.

It also protects existing mitochondria and creates new mitochondria in the brain (80, 101).

Both ALA and carnitine are included together in Optimal Energy.

Click here to subscribe

16. Thiamine

Thiamine, also known as Vitamin B1, is an essential water-soluble nutrient that cannot be made by the body.

It’s used in nearly every cell in the body and it’s especially important for supporting energy levels and mitochondrial functioning in the brain.

It’s also required by nerve cells and other supporting cells in the nervous system.

Research shows that thiamine deficiency induces oxidative stress, resulting in mitochondrial abnormalities in the brain (21-22).

Healthy food sources of thiamine include green peas, beef liver, asparagus, pecans, spinach, sunflower seeds, macadamia nuts, oranges, cantaloupe and eggs. 

These foods are included in my Free Grocery Shopping Guide for Optimal Mental Health.

Thiamine is also included in Optimal Energy.

 

17. Creatine

Creatine is a molecule produced in the body and found in foods, particularly meat, eggs, and fish.  

Creatine is also available as a supplement.

Athletes, bodybuilders, wrestlers, sprinters often take extra creatine to gain more muscle mass.

It’s an incredibly well-researched supplement and safe to take regularly. 

Supplementing with creatine can also support the brain.

It's been shown to have neuroprotective effects. It rapidly produces energy to support brain cell function.

Researchers have also found that creatine supplementation improves function of mitochondria in the brain (25).

I personally take creatine powder before workouts.

 

18. Curcumin

Curcumin is the most heavily researched compound within turmeric, the spice that gives curry its yellow colour.

It’s one of my favourite natural compounds for the brain.

One reason why is because it protects mitochondria and prevents mitochondrial dysfunction in the brain (111-113).

Curcumin can be found in both Optimal Energy and Optimal Antiox.

 

19. Malic Acid

Malic acid, also known as malate, is an intermediate of the Krebs cycle.

It’s a key step in the pathway of energy production by the mitochondria.

And it has a number of health benefits because it improves mitochondrial function.

Malate supplementation has been shown to increase the availability of NAD+, which is necessary for producing ATP.

Malate also increases NADPH levels, which is a fundamental antioxidant in the body that promotes mitochondrial function (114).

That’s why I’ve included malic acid in the Optimal Energy supplement.

 

20. Niacinamide

Niacinamide, also known as nicotinamide, is a vitamin found in foods.

It’s also often taken as a supplement.

Niacinamide is the precursor to NAD+ and therefore supplementation can increase levels of this molecule and improve mitochondrial function.

Researchers have found that niacinamide prevents energy depletion in the brain (115).

It also improves the mitochondrial quality of brain cells by inducing autophagy and causing dysfunctional mitochondria to fragment (116).

Click here to subscribe

21. N-Acetyl-Cysteine

N-Acetyl-Cysteine (NAC) is a modified form of the amino acid cysteine.

It’s also the precursor to glutathione, your body’s master antioxidant.

Nowadays, we’re exposed to so many environmental toxins, which cause oxidative stress in the body and deplete our reserves of cysteine and glutathione.  

But supplementing with NAC can increase and normalize your cysteine and glutathione levels. 

This can combat and reduce oxidative stress in your brain, which can then help treat several mental illnesses.

NAC can also help support your mitochondria.

In one study, NAC treatment for 9 weeks reduced oxidative damage to the mitochondria (117).

And in multiple cell studies, NAC improved mitochondrial function by reducing oxidative stress (118-119).

 

22. Succinic acid

Succinic acid, also known as succinate, is an intermediate molecule of the Krebs cycle that plays a significant role in the electron transport chain.

It can be purchased as a supplement to boost energy production by the mitochondria.

Succinic acid has been shown to prevent structural and functional damage to the mitochondria caused by oxidative stress (120).

And in brain cells that have mitochondrial dysfunction, succinic acid supplementation improved mitochondrial functioning by increasing glucose and oxygen usage. This led to increased levels of ATP energy (121).

For this reason, succinic acid is in the Optimal Energy supplement.

 

23. EGCG

Epigallocatechin-3-Gallate (EGCG) is the main polyphenol found in green tea.

It’s been shown to have anti-inflammatory and neuroprotective effects.

EGCG accumulates within the mitochondria and activates a number of proteins related to mitochondrial function (122-124).

I personally drink organic green tea regularly, usually in place of coffee on days when I’m relaxing.

However, it’s important to keep in mind that the body isn't very good at absorbing EGCG and distributing it to the brain and other tissues.

That's why researchers often use large dosages of concentrated EGCG in their studies instead of green tea.

But unfortunately, large dosages of concentrated EGCG have been shown to cause liver toxicity.

So you could supplement with large dosages of concentrated EGCG and see some benefits.

But you'd be damaging your liver at the same time.

Not good.

So what should you do? How do you absorb EGCG and get the amazing benefits of it without damaging your liver?

You take it with Vitamin C.

Research shows that you can enhance the absorption and availability of EGCG by taking it with Vitamin C (9).

That's why the Optimal Antiox supplement includes a small and safe amount of EGCG, plus 500 mg of Vitamin C.

This significantly enhances the absorption of EGCG, and ensures you get all the brain and mental health benefits of EGCG (without the harm).

That’s why I take Optimal Antiox every day, and especially whenever I drink some green tea.

 

24. Citicoline

Citicoline (also known as CDP-Choline) is one of the most bioavailable forms of choline, an essential B vitamin.

You need to get choline from food, but most people do not get enough because very few foods in the Western diet contain high levels of it.

That’s why supplementation is often necessary for optimal brain health.

Citicoline is a supplemental form of choline that has anti-inflammatory and neuroprotective effects.

Research shows that citicoline slows down the aging of mitochondria in the brain (125).

It also significantly enhances mitochondrial energy production and increases ATP levels in the frontal lobe of the brain (125).

Citicoline significantly improves my focus and mental energy.

You can also find some choline in foods such as beef liver and egg yolks, but the effects of Citicoline are much more noticeable and immediate because it quickly passes the blood-brain barrier and supports your brain.  

Make sure you read this article to learn more about the remarkable benefits of Citicoline.

 

25. Ginkgo Biloba

Ginkgo Biloba is a plant that has been used in China for thousands of years to treat a number of health problems.

It’s one of the top-selling natural supplements in the world, and it’s even a prescription herb in Germany.

Ginkgo Biloba is most commonly used to improve brain health because it increases brain blood flow and improves memory, mood, mental energy, and attention in both healthy and unhealthy individuals.

It even reduces the risk of dementia and Alzheimer’s disease!

Researchers have discovered that one of the ways it supports brain function is by improving mitochondrial function and increasing the production of ATP in brain cells (126-127).

It even restores ATP levels after mitochondrial damage (128).

Ginkgo Biloba is included in the Optimal Brain supplement.

 

Conclusion

Picture of mitochondrion, the energy producer of brain cells.

Paying attention to your mitochondria is crucial for optimal brain and mental health.

Luckily there are a number of dietary and lifestyle habits that can protect and support mitochondrial function.

The following steps will ensure your body and brain have healthier and more abundant mitochondria: 

  • Take Optimal Energy. It’s an all-in-one mitochondrial supplement. It includes the 17 best natural compounds proven to boost mitochondrial functioning in the brain.

  • Eat nutrient-dense, whole foods, including plenty of fruits and vegetables. Download my free food guide for a shopping list of the best foods to eat.

  • Avoid refined sugars, processed flours, industrial oils, trans fats, gluten and processed dairy.

  • Eat organic grass-fed beef and wild-caught fish, or supplement with krill oil.

  • Exercise

  • Try LLLT

  • Restrict calories and/or fast intermittently

  • Follow a cyclic ketogenic diet and/or take exogenous ketones

If you follow these strategies, there’s no doubt that you can improve your mitochondrial health and naturally restore your mood and energy levels.

Please share this post with one of your friends or family members who you think might benefit from protecting and supporting their mitochondria, because it really is an underappreciated and unknown aspect of optimal brain and mental health. 

 
Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) http://nutritionandmetabolism.biomedcentral.com/articles/10.1186/1743-7075-10-63

(2) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630798/

(3) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630798/

(4) http://www.hindawi.com/journals/jar/2011/807108/

(5) http://www.ncbi.nlm.nih.gov/pubmed/24396061

(6) http://www.ncbi.nlm.nih.gov/pubmed/24972878

(7) https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-11-142

(8) http://www.nutritionandmetabolism.com/content/10/1/63

(9) https://www.masscfids.org/resource-library/13-basic-information/302-mitochondrial-dysfunction-post-exertional-malaise-and-cfsme

(10) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883043/

(11) http://www.ncbi.nlm.nih.gov/pubmed/15749705

(12) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492662/

(13) http://www.ncbi.nlm.nih.gov/pubmed/24449278

(14) http://www.cell.com/cell/abstract/S0092-8674(06)01428-0?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867406014280%3Fshowall%3Dtrue

(15) http://www.nrjournal.com/article/S0271-5317(03)00234-3/abstract

(16) http://www.ncbi.nlm.nih.gov/pubmed/20840838

(17) http://www.nature.com/tp/journal/v5/n1/full/tp2014131a.html

(18) http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462011000400003

(19) http://www.ncbi.nlm.nih.gov/pubmed/22776356

(20) http://www.fasebj.org/content/19/12/1657.abstract

(21) http://www.ncbi.nlm.nih.gov/pubmed/6493495

(22) http://link.springer.com/article/10.1007/s13105-013-0242-y

(23) http://www.ncbi.nlm.nih.gov/pubmed/16102804

(24) http://www.healio.com/endocrinology/practice-management/news/online/%7B4b5c8b84-70c2-4928-a7b0-88f24f50d609%7D/vitamin-d-supplementation-enhanced-mitochondrial-function-lessened-fatigue

(25) http://www.ncbi.nlm.nih.gov/pubmed/12657421

(26) http://www.ncbi.nlm.nih.gov/pubmed/21423579

(27) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100547/

(28) http://www.ncbi.nlm.nih.gov/pubmed/15183071

(29) http://www.fasebj.org/content/20/2/269.abstract

(30) https://biolres.biomedcentral.com/articles/10.1186/0717-6287-47-74

(31) http://www.ncbi.nlm.nih.gov/pubmed/26278015

(32) http://www.ncbi.nlm.nih.gov/pubmed/19211721

(33) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670924/

(34) http://www.ncbi.nlm.nih.gov/pubmed/26365487

(35) http://www.ncbi.nlm.nih.gov/pubmed/21061051

(36) http://www.ncbi.nlm.nih.gov/pubmed/17332207

(37) http://www.ncbi.nlm.nih.gov/pubmed/16765926

(38) http://www.ncbi.nlm.nih.gov/pubmed/2476986/

(39) http://www.ncbi.nlm.nih.gov/pubmed/10365442/

(40) http://www.ncbi.nlm.nih.gov/pubmed/6479342/

(41) http://www.ncbi.nlm.nih.gov/pubmed/17693028/

(42) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945284/?report=classic

(43) http://www.ncbi.nlm.nih.gov/pubmed/22850314

(44) http://www.ncbi.nlm.nih.gov/pubmed/23675984

(45) http://www.nadhenergy.eu/what-does-nadh-do.html

(46) http://www.ncbi.nlm.nih.gov/pubmed/10071523

(47) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346380/

(48) http://www.ncbi.nlm.nih.gov/pubmed/15134388

(49) http://lifewave.com/pdf/ThetaNutrition/%283%29Enhancing-Mitochondrial-Function-With-D-Ribose.pdf

(50) http://thealbanyjournal.com/2012/01/energize-yourself-with-d-ribose/

(51) http://lifewave.com/pdf/ThetaNutrition/%283%29Enhancing-Mitochondrial-Function-With-D-Ribose.pdf

(52) http://lifewave.com/pdf/ThetaNutrition/%283%29Enhancing-Mitochondrial-Function-With-D-Ribose.pdf

(53) http://www.ncbi.nlm.nih.gov/pubmed/17109576

(54) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790427/

(55) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1172515/

(56) http://www.ncbi.nlm.nih.gov/pubmed/19861415

(57) http://www.humanclinicals.org/biopqq/

(58) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212345/

(59) http://www.ncbi.nlm.nih.gov/pubmed/18591768

(60) http://www.ncbi.nlm.nih.gov/pubmed/20178828

(61) http://www.ncbi.nlm.nih.gov/pubmed/12383230

(62) http://www.ncbi.nlm.nih.gov/pubmed/19026989

(63) http://www.ncbi.nlm.nih.gov/pubmed/21159390

(64) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021779

(65) http://www.ncbi.nlm.nih.gov/pubmed/19699263

(66) http://www.ncbi.nlm.nih.gov/pubmed/16709402

(67) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011484/

(68) http://www.ncbi.nlm.nih.gov/pubmed/23313551

(69) http://www.ncbi.nlm.nih.gov/pubmed/25386668

(70) http://www.ncbi.nlm.nih.gov/pubmed/21799249

(71) http://www.ncbi.nlm.nih.gov/pubmed/20010493

(72) http://coconutresearchcenter.org/hwnl_4-2.htm

(73) http://www.westonaprice.org/modern-diseases/coenzyme-q10-for-healthy-hearts/

(74) http://lpi.oregonstate.edu/mic/dietary-factors/L-carnitine

(75) http://www.ncbi.nlm.nih.gov/pubmed/12047496

(76) http://www.ncbi.nlm.nih.gov/pubmed/16316746

(77) http://www.ncbi.nlm.nih.gov/pubmed/21443422

(78) http://www.ncbi.nlm.nih.gov/pubmed/17543140

(79) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382850/

(80) http://www.lifeextension.com/magazine/2011/8/Lipoic-Acid-Reverses-Mitochondrial-Decay/Page-01

(81) http://www.nutritionandmetabolism.com/content/10/1/63

(82) http://www.ncbi.nlm.nih.gov/pubmed/16815381

(83) http://www.ncbi.nlm.nih.gov/pubmed/18979198

(84) http://www.ncbi.nlm.nih.gov/pubmed/19664343

(85) http://www.ncbi.nlm.nih.gov/pubmed/18428021

(86) http://www.ncbi.nlm.nih.gov/pubmed/11579422

(87) http://www.ncbihttp://www.ncbi.nlm.nih.gov/pubmed/23650447nlm.nih.gov/pubmed/23650447

(88) http://www.ncbi.nlm.nih.gov/pubmed/16027739

(89) http://www.ncbi.nlm.nih.gov/pubmed/18177933

(90) http://www.ncbi.nlm.nih.gov/pubmed/18235426

(91) http://psych.lf1.cuni.cz/zf/publikace/b005.pdf

(92) http://www.ncbi.nlm.nih.gov/pubmed/21414088

(93)https://www.researchgate.net/publication/228683547_Common_aspects_of_neuroplasticity_mood_disorders_and_mitochondrial_functions

(94) http://www.pnas.org/content/112/50/15486.full.pdf

(95) http://www.nature.com/tp/journal/v4/n6/full/tp201444a.html

(96) http://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-015-0310-y

(97) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640606/

(98)https://www.researchgate.net/publication/221747050_Corticosterone_reduces_brain_mitochondrial_function_and_expression_of_mitofusin_BDNF_in_depression-like_rodents_regardless_of_exercise_preconditioning

(99)http://hypotyreos.info/attachments/079_Mitokondriell%20dysfunktion%20i%20depressiva%20sjukdomar.pdf

(100) http://www.ncbi.nlm.nih.go v/pmc/articles/PMC4382850/

(101) http://www.ncbi.nlm.nih.gov/pubmed/17605107

(102) http://www.ncbi.nlm.nih.gov/pubmed/24189435

(103) http://www.sciencedirect.com/science/article/pii/S0925443909002427

(104) http://www.ncbi.nlm.nih.gov/pubmed/20114042

(105) http://archpsyc.jamanetwork.com/article.aspx?articleid=210694

(106) https://www.masscfids.org/resource-library/13-basic-information/302-mitochondrial-dysfunction-post-exertional-malaise-and-cfsme

(107) http://www.umdf.org/site/c.8qKOJ0MvF7LUG/b.7934627/k.3711/What_is_Mitochondrial_Disease.htm

(108) http://www.ncbi.nlm.nih.gov/pubmed/17239370

(109) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566449/

(110) https://riordanclinic.org/wp-content/uploads/2015/01/mitochondria-and-cancer-1.pdf

(111) https://accelerating.org/articles/curcumin.html

(112) https://www.ncbi.nlm.nih.gov/pubmed/23422877

(113) https://www.ncbi.nlm.nih.gov/pubmed/26254982

(114) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0058345

(115) https://www.ncbi.nlm.nih.gov/pubmed/10566977

(116) https://www.ncbi.nlm.nih.gov/pubmed/19473119

(117) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312826/

(118) https://www.ncbi.nlm.nih.gov/pubmed/17917164

(119) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726696/

(120) https://www.ncbi.nlm.nih.gov/pubmed/3032929

(121) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430749/

(122) https://www.ncbi.nlm.nih.gov/pubmed/26731017

(123) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670924/

(124) https://www.ncbi.nlm.nih.gov/pubmed/16797120

(125) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824764/

(126) https://www.cambridge.org/core/journals/international-psychogeriatrics/article/mitochondrial-effects-of-ginkgo-biloba-extract/A5F444770B1B281798572D608A74DC20

(127) https://www.ncbi.nlm.nih.gov/pubmed/17977008

(128) https://www.frontiersin.org/articles/10.3389/fphar.2015.00206/full

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

28 Proven Ways to Promote the Regeneration of Myelin

Myelin is critical for optimal brain function and mental health.

What is myelin?

Myelin sheath.

Myelin is a fatty, white substance that wraps around the end of many nerve cells. It forms an electrically insulating sheath that increases nerve condition speeds.

In other words, it allows your brain to send information faster and more efficiently, making it absolutely essential for the optimal functioning of your nervous system (39, 40). 

So not surprisingly, myelin sheath plays a key role in determining intelligence and improving cognitive performance (41, 42). 

The production of myelin throughout the nervous system is called myelination or myelinogenesis.

But demyelination can also happen. 

This happens when the myelin that insulates your nerves is destroyed or deteriorates, leading to mental health symptoms and neurodegenerative diseases (44). 

Multiple sclerosis is one of the more common demyelinating condition, but a number of neurological and psychiatric illnesses have been linked to demyelination, including (45):

Myelin sheath.

If you have one of these conditions and suspect you might have symptoms of demyelination, don’t worry.

There are dietary and lifestyle modifications that can help your body repair and re-manufacture myelin. Studies show that oligodendrocyte cells are responsible for the formation of new myelin in both the injured and normal adult brains (43).

Here are 28 holistic ways to increase oligodendrocyte cells, promote myelin production and myelin sheath repair, and increase the regeneration of myelin. 

Click here to subscribe

1. Deep Sleep and Melatonin

Research has found that sleep increases myelination and increases the production of oligodendrocyte precursor cells (OPCs).

One study found that production of OPCs doubled in mice while they slept. The mice that were forced to stay awake had higher levels of stress hormones and higher rates of brain cell death (1-2). 

Researchers believe this means that sleep loss can aggravate symptoms of multiple sclerosis.

Baby sleeping. Sleep and melatonin help regenerate myelin.

That’s why getting at least 7 hours of high-quality, restorative sleep is so critical. 

But it’s not just the amount of sleep you get that’s important. It’s also the quality of your sleep. 

The researchers found that the production of the myelin-forming cells increased the most during deep, rapid-eye movement (REM) sleep. 

Melatonin, your body’s sleep hormone, has also been shown to promote myelination and increase myelin production by significantly reducing inflammation in the brain (46).

This sleep supplement contains magnesium and a number of other natural compounds that I’ve used over the years to promote the production of melatonin.

But I work with my clients so that they can naturally produce more melatonin and maximize the quality of their sleep without so many supplements. We have free online workshop that talks about how you can work with us. You can register for the workshop here.

Deep sleep can also improve your brain’s growth hormone, lower your stress hormone, and slow down the onset of dementia

 

2. Iodine and Thyroid Hormones

Iodine is a key mineral that is required to produce thyroid hormones. Without enough iodine, you may end up with symptoms of hypothyroidism

Research shows that a deficiency in iodine and lack of thyroid hormones can impair myelination (7).

The process of myelination is known to depend on the thyroid hormone. The myelinating cells are the oligodendroglia which appear to stop functioning in MS (and sometimes to a milder degree in Alzheimer’s disease, and other conditions). The cells’ absorption of thyroid hormone is influenced by dietary factors.
— Ray Peat

Other studies show that thyroid hormones stimulate the expression of myelin protein genes, and promote remyelination in the brain by enhancing oligodendrocyte maturation (8, 9). 

So supporting your thyroid and getting enough iodine are key steps towards increasing myelin and optimizing the formation of new myelin. 

You can read more about how to support your thyroid and enhance the production of thyroid hormones here.  

I highly recommend getting a full thyroid panel done regularly.

 

3. Vitamin C

Oranges. The Vitamin C in oranges help regenerate myelin.

Vitamin C is known to participate in myelin formation (10, 11). 

Collagen synthesis, which is dependent on Vitamin C, has also been linked to the formation of myelin sheath (12, 13). 

Vitamin C can be found in foods such as peppers, citrus fruits, green leafy vegetables, broccoli, tomatoes, and berries. These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

You can also take it in supplement form
 

 

4. Zinc

As I’ve discussed before, zinc is an essential trace mineral that activates several hundred enzymatic reactions, including neurotransmission.

It’s estimated that 2 billion people in the world are deficient in zinc, and six different studies show that subclinical deficiency of zinc impairs brain function in children and adults (14-16).

Oysters. The zinc in oysters help regenerate myelin.

So, if you struggle with a brain or mental health disorder, it’s quite possible that you’re deficient.  

Zinc also affects myelination.

The mineral is needed for myelin proteins to work properly, and research shows that a deficiency in zinc leads to a reduction in myelin formation and myelin recovery (17). 

Some of the best food sources of zinc include oysters, grass-fed beef, pumpkin seeds, cashews, mushrooms and spinach. These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

But I still recommend at least short-term supplementation to ensure you get enough to increase myelination.

I created and take the Optimal Zinc supplement

Check out my previous post about zinc and copper if you’re interested in discovering more steps you can take to increase your zinc levels.  

 

5. Cholesterol

Cholesterol is a waxy, fat-like substance that’s found in all cells of the body.

Your body needs cholesterol to make hormones and vitamin D.

And it’s an indispensable component of myelin. 

Butter. The cholesterol in butter helps regenerate myelin.

Without it, myelin membrane growth is “severely perturbed” (18). 

So just like you shouldn’t be afraid of saturated fat, you shouldn’t be afraid of eating cholesterol-rich foods.

Some of the best sources of cholesterol include grass-fed butter or ghee, beef liver and pastured egg yolks. These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Click here to subscribe

6. Lithium 

Lithium is predominantly known as a medication given to bipolar patients to manage their symptoms. 

However, it’s also an essential mineral.

Bipolar patients are often given high doses of lithium carbonate.

But low doses of lithium orotate can be safely supplemented to support the brain and improve mental health.

Research shows that lithium stimulates the expression of myelin genes, restores the myelin structure, and promotes remyelination (19). 

As I discussed before, lithium orotate can also increase your brain’s growth hormone (BDNF)

So it’s definitely something you want to consider taking if you want to increase myelin in the brain.

 

7. Oxygen Therapy

Hyperbaric oxygen therapy (HBOT) is a treatment that enhances healing and recovery after injury to the central nervous system.

Patients inhale 100% oxygen in a total body chamber. 

Usually, oxygen is transported throughout the body only by red blood cells. But with HBOT, oxygen is dissolved into all body fluids, including the fluids of the central nervous system.

This leads to oxygen being  carried to areas of the body where circulation is diminished or blocked. As a result, extra oxygen can reach all damaged tissues, including areas that need to heal.

Researchers have found that HBOT can cause "significant remyelination" (83-84). 

Other studies show that it can alleviate myelin damage (85). 

You’ll need to find a practitioner or clinic in your area that provides this treatment.

 

8. Ketogenic Dieting

A ketogenic diet is a very low-carb diet – less than 50 grams of carbs per day.

When you restrict carbohydrate-rich foods – such as grains, sugar, and even potatoes, legumes and fruit – your body enters ketosis, a metabolic state in which your body and brain run on fatty acids and “ketones” instead of glucose.

Foods incorporated in a ketogenic diet. A ketogenic diet and ketones can help repair myelin.

Ketones are an alternative source of energy for your brain cells. And several studies show that when you increase the production of ketones, you improve myelination and increase myelin production (3-6). 

So if you’re trying to rebuild myelin sheath, you should consider a cyclic ketogenic diet. 

As I’ve discussed before, ketones can also increase your brain’s growth hormone, help you overcome brain fog, support your brain’s mitochondria, and slow down cognitive decline

 

9. Iron

Iron is an essential mineral that is present in all cells and plays a role in several vital functions, including oxygen consumption and ATP production.

It’s also important for myelin production.

Studies show that low iron levels lead to a reduction in myelination, and normal iron levels support the formation of myelin and increase myelin (20). 

In most cases, I don’t recommend supplementing with iron. Instead, get it from food.

Beef liver is the best source, and it’s included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.
 

 

10. Low Level Laser Therapy

Low-level laser therapy (LLLT), or photobiomodulation, is a treatment that uses low-level (low-power) lasers or light-emitting diodes (LEDs) to stimulate brain cells, helping them function better.

Most doctors don't know about LLLT; but not every doctor.

Dr. Norman Doidge, a physician who teaches at the University of Toronto here in Canada, discusses the amazing effects of LLLT in his book The Brain’s Way of Healing.

Researchers have found that LLLT can increase myelination and increase the total number of myelinated axons (79-81). 

LLLT has also been shown to restore normal levels of myelin in animals (81-82). 

I previously wrote about my experience with low-level laser therapy here.

I use this device and shine the red and infrared light on my forehead for 5 minutes every day. I also shine it on other parts of my head and on my entire body, including on my thyroid, thymus gland and gut. I experience incredible benefits from doing this.

When I’m travelling, I take this smaller and more convenient device with me and shine it on my forehead.

I’ve also been using the Vielight Neuro Duo, which is a transcranial-intranasal headset with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to try a Vielight device, you can use the coupon code JORDANFALLIS for a 10% discount

LLLT also supports mitochondria function, reduces brain fog, promotes synaptogenesis, and increases blood flow to the brain

I encourage you to check out my full article about it for more information.

 

11. Phosphatidylserine

Phosphatidylserine is a fat-soluble amino acid compound that plays a key role in optimal cognitive function. High amounts of phosphatidylserine can be found within the brain, and supplementation has been shown to improve attention and memory, especially in the elderly (21-23).

…consumption of phosphatidylserine may reduce the risk of dementia and cognitive dysfunction in the elderly.
— Food and Drug Administration

Researchers have also concluded that phosphatidylserine is required for healthy nerve cell membranes and myelin in the brain (24). 

I take phosphatidylserine every day. It's part of the Optimal Brain supplement

Make sure you read this article to learn more about the remarkable benefits of Phosphatidylserine.

 

12. Pregnenolone

Pregnenolone is a steroidal hormone manufactured by the body, but it can also be taken as a supplement.

Picture of a human brain.

It’s been shown to enhance memory and reduce stress-induced fatigue.

It’s the precursor to almost all other steroid hormones, including DHEA, progesterone, testosterone, estrogens, and cortisol.

Pregnenolone and other steroid hormones regulate, repair, rebuild, and increase the production of myelin (25-28). 

I personally tried pregnenolone. It did give me a boost in brain function and mental energy. However, it also made me angry and irritable so I stopped taking it. This happens to some people, but a lot of people don't experience this. It's worth trying to see how you react.
 

Click here to subscribe

13. Uridine 

Uridine is a nucleotide base found in beer.

I don’t recommend drinking beer, but supplementing with pure uridine can protect the brain, enhance cognition, and increase mood and motivation. 

It’s been proven to help treat “myelin sheath lesion” in several experimental and clinical studies (29, 30). 

 

14. Herbs That Increase Myelin

Ashwagandha helps regenerate myelin.

Ashwagandha is a popular Indian herb commonly used to prevent anxiety.

Withanoside IV is one of the main therapeutic compounds in ashwagandha and research shows that it can increase myelin levels in the nervous system (31).

I take ashwagandha during periods of high stress. It’s included in this supplement.

Ginkgo Biloba is another common herb, which is taken for cognitive enhancement or to alleviate cognitive decline.

It’s beneficial effects of cognition may be because it significantly increases the number of myelinated axons (34).  

Ginkgo Biloba is included in the Optimal Brain supplement

 

15. Inositol

Inositol is a small molecule structurally similar to glucose that is involved in cellular signalling. 

At high doses, it reduces anxiety. 

Research shows that animals treated with inositol have significantly fewer demyelinating lesions (32). 

I took high doses of inositol powder when weening off psychiatric medication.

I previously wrote a full article about inositol here

 

16. Lion’s Mane 

Lion’s mane mushroom helps regenerate myelin.

Hericium Erinaceus – better known as Lion’s mane mushroom – might be my favourite way to regenerate myelin. 

Research shows that lion’s mane increases the rate of myelination production, and the process of myelination begins earlier in the presence of the mushroom (33). 

I used to take this lion’s mane mushroom. It’s one of the highest-quality lion’s mane mushroom supplements that I could find from a reputable brand. I spent a lot of time researching and looking into different sources because not all lion's mane supplements are high-quality and effective, and I settled on this one.

 

17. Consume Flavonoids

There are several flavonoids, a diverse group of phytonutrients found in fruits and vegetables, that have been demonstrated to promote myelination. 

Research shows that the flavonoids luteolin, quercetin and fisetin significantly decrease myelin phagocytosis and may be able to limit the demyelination process during multiple sclerosis (35). 

Quercetin, one plant flavonoid in particular with potent antioxidant action, has been shown to increase the number of oligodendrocyte precursor cells and myelin basic protein cells (36). 

Click here to subscribe

18. Learn or Experience Something New

You can also generate new myelin by learning something new and exposing yourself to novel life experiences.

Guitar. Learning the guitar can help you form new myelin.

For example, one report showed that learning a new instrument leads to increased myelin in areas of the brain involved with musical performance. 

The researchers explain that myelin increased proportionately to the number of hours each person had practiced the instrument (38).

So the more you practice and try to learn something, the more myelin you generate.

 

19. Exercise

I’ve already discussed how exercise increases your brain’s growth hormone, supports your brain’s mitochondria, helps reverse cognitive decline, and stimulates your vagus nerve.

It clearly does so much good, so it’s not too surprising that it also supports myelin formation. 

Woman lifting weights. Exercise can help with the regeneration of myelin.

Research shows that long-term exercise improves memory by increasing and restoring myelin (47). 

Running has also been shown to increase myelination and delay the progression of demyelination, and therefore delays the progression of Alzheimer’s disease (48). 

Lastly, researchers have found that exercise increases mitochondrial activity, which then increases myelination in the brain (49). 

This is exercise routine I try to follow consistently:

  • Lift heavy weights 1-4 times per week

  • High-intensity interval sprinting 1-2 times per week

  • Walk as much as I can (ideally 30-60 minutes every day)

  • Walking, weightlifting and sprinting are the best forms of exercise, but you should choose a sport or exercise routine that you enjoy, so that you’ll stick with it consistently

 

20. Brain-Derived Neurotrophic Factor (BDNF)

Brain-derived neurotrophic factor, also known as BDNF, is a naturally-occurring hormone in the brain that improves brain function and lowers your risk of mental disease. 

It also regulates the myelination process. 

Research shows that BDNF produces a long-term increase in both the rate and extent of myelination, and enhances and accelerates myelin formation (50). 

I previously provided 21 ways to boost BDNF in this post.  

 

21. Testosterone

When I lived in a moldy home, suffered multiple concussions and was placed on antidepressants, my testosterone plummeted. 

Very muscular man looking angry. Testosterone can increase myelin formation.

No conventional doctor tested my testosterone because they assumed every a man in his 20s would have healthy levels. 

But they were wrong. 

Eventually I saw a smart doctor and he found out that I had the testosterone levels of an old man.

I was put on testosterone replacement therapy for almost one year to get my levels back to normal. And over that time, I saw a huge increase in my brain and mental health.

This may be because testosterone has been shown to stimulate the formation of new myelin and reverse myelin damage (51). 

Researchers have also concluded that hormone replacement should be a considered treatment for males who have multiple sclerosis, as it can stall (and perhaps even reverse) the neurodegeneration associated with MS (52). 

That's why it's so important to test. Make sure you check both total testosterone and free testosterone

You can test your total and free levels here. 

 

22. Omega-3 Fatty Acids

Omega-3 fatty acids are essential fats that your body cannot produce itself. They are found primarily in fish and are necessary for the normal electrical functioning of your brain and nervous system.

Cooked piece of salmon. The omega-3 fatty acids in salmon can help with the regeneration of myelin.

They appear in most of my posts because they are so critical for brain and mental health and affect so many aspects of wellness.

They’ve been shown to help people overcome addiction, repair the blood-brain barrier, stimulate the vagus nerve, and even reverse cognitive decline.

And now researchers have found that they also increase myelin production, helping your body produce more myelin (53, 54). 

According to Judy Graham, author of the book Managing Multiple Sclerosis Naturally: A Self-Help Guide to Living with MS, myelin cell membranes that contain omega-3 fatty acids are more fluid, which improves the efficiency of nerve impulse conduction. 

She also points out in her book that rates of multiple sclerosis are lower in areas of high fish consumption. 

I eat lots of wild salmon and sometimes supplement with krill oil.

Click here to subscribe

23. Vitamin D and Vitamin K2

Vitamin D is a fat-soluble vitamin that our skin synthesizes when exposed to the sun.

Sun shining through the clouds. Vitamin D from the sun can help repair myelin.

Research shows that the Vitamin D receptor boosts the regeneration of myelin (55). 

Vitamin D also significantly increases myelination in rats (56). 

It’s best to get your Vitamin D from sunlight, but most people can’t get enough, especially during the winter. 

That’s why I take a Vitamin D3 supplement.

If you decide to supplement, it’s a good idea to also take some Vitamin K2 with it, as it has also been shown to support myelin (57). 

I also highly recommend checking your Vitamin D levels. It's one of the most important tests you can take for your health.

 

24. Choline

Choline is an essential B vitamin that most people don’t consume enough of, because very few foods in the Western diet contain it.

It’s also a component of myelin and supports myelin production.

Egg yolk. Egg yolks contain choline, which can help repair myelin.

Research shows that the choline pathway promotes remyelination, and enhances the repairing and rebuilding of myelin sheath (64). 

Citicoline (also known as CDP-Choline) is the most bioavailable form of choline. 

One study found that citicoline enhances myelin regeneration and increases remyelination in the central nervous system. The researchers concluded that citicoline could become a promising substance for patients with multiple sclerosis because of its regenerative action combined with its excellent safety profile (63). 

That’s why I recommend supplementing with it. It’s one of my favourite supplements for optimal brain and mental health. I personally take citicoline every day now, and I find it improves my focus and mental energy. It's included in the Optimal Brain supplement

You can also find some choline in beef liver and egg yolks, but citicoline is more impactful. 

And as I’ve discussed before, citicoline can also help you overcome brain fog and support the blood brain-barrier.

Make sure you read this article to learn more about the remarkable benefits of Citicoline.

 

25. Reduce Inflammation 

Reducing inflammation throughout your entire body is a key step towards protecting and regenerating myelin. 

Man experiencing inflammation in the brain. Reducing inflammation can increase myelin formation.

Researchers have found that inflammatory cytokines reduce myelination, and high levels of inflammation are often found in people with multiple sclerosis (65). 

The best way to reduce inflammation is by following an anti-inflammatory diet.

You should strive to eliminate all gluten, refined carbohydrates (particularly flour), and processed food from your diet, and increase your intake of vegetables, fruits, wild fish, grass-fed beef and pastured chicken.

My free Grocery Shopping Guide for Optimal Brain Health contains a bunch of healthy anti-inflammatory foods that you can eat on a regular basis. 

Taking curcumin and krill oil supplements can also significantly reduce inflammation in the body and brain. 

Make sure you also check out this article for 23 effective ways to reduce inflammation in the brain.

 

26. B Vitamins and Methylation

A number of different B vitamins can increase myelin and help your body regenerate myelin. 

Vitamin B12 plays a key role in the generation and function of myelin.

Researchers have found that low vitamin B12 levels are significantly associated with myelin degeneration (66, 68). 

Other studies have also shown that people with multiple sclerosis often have abnormally low levels of vitamin B12, and vitamin B12 injections significantly improve their symptoms (67). 

The B Vitamins, including B1, B2, B5, B6 and B12. B Vitamins can help the body form new myelin sheath.

According to Dr. Perlmutter, author of Brain Maker and Grain Brain, vitamin B12 deficiency enhances the destruction of myelin and compromises the ability of the body to repair and rebuild damaged myelin sheath. 

Folate is another B vitamin that plays an important role in the maintenance of myelin. Studies have shown that a deficiency can lead to reduced levels of myelin (69-70). 

S-adenosylmethionine (SAMe) isn’t a B vitamin, but along with folate and B12, it is involved with methylation, and has been shown to increase the development of myelin (71). 

One amazing study found that biotin (Vitamin B7) activates enzymes involved in myelin synthesis and 91% of patients with multiple sclerosis improved with high doses of biotin. Two multi-centric double-blind placebo-controlled trials are currently underway (72). 

Lastly, pantothenic acid (Vitamin B5) can indirectly help with myelin formation because it helps with the synthesis of fatty acids and myelin is mostly made up of fat. Myelin has been shown to degenerate in chickens that are deficient in B5 (73). 

 

27. Probiotics and Prebiotics

It is estimated that 100 trillion bacteria, and 500 to 1,000 species of bacteria, live in the human gut.

These gut bacteria, collectively known as the gut microbiome, help with digestion.

But an increasing amount of research suggests that gut bacteriaalso communicate with your brain through the microbiome-gut-brain axis.

And probiotics and prebiotics can improve your brain health and support myelin production by actually changing the mixture of bacteria in your gut.

Probiotics are live microorganisms with health benefits when consumed, generally by improving or restoring the gut microbiome.

Meanwhile, prebiotics are substances that humans can't digest, so they pass through our gastrointestinal tract and promote the growth of many different strains of good bacteria in your gut. Essentially, prebiotics are food for the probiotics in your intestines.

Research has found that your gut microbes affect the structure and function of the brain by regulating myelination. Probiotics and prebiotics can help upregulate the genes linked to myelination and myelin plasticity (86).

Prebiotic-rich foods include sweet potatoes, carrots, onions, asparagus and squash. These foods are included in my free grocery shopping guide and you should try to eat them as much as possible.

To increase my probiotic intake, I take Optimal Biotics, which is a premium probiotic supplement that improves my mental health.

I also like to drink kombucha and eat fermented foods regularly.

Check out this article to learn more about probiotics and prebiotics, and how you can use them to improve your brain function.

 

28. Reduce Exposure to Electromagnetic Fields (EMFs)

“I have no doubt in my mind that, at the present time, the greatest polluting element in the Earth’s environment is the proliferation of electromagnetic fields.” - Dr. Robert Becker, Nobel Prize nominee and author of The Body Electric: Electromagnetism And The Foundation Of Life

You won't hear many people talk about this but it needs to be acknowledged.

An increasing amount of research is showing that electromagnetic frequencies emitted from Wi-Fi, laptops, and cellphones can negatively affect the brain and produce widespread neuropsychiatric effects including depression (59). 

It’s an inconvenient truth that needs to be talked about, rather than downplayed, ignored and dismissed.

Image of EMFs surrounding a home. EMFs can reduce myelin formation, so you are best to avoid them or limit your exposure to them.

Some people are more sensitive to them than others. I’m one of them. 

Two environmental doctors have told me that I’m sensitive to environmental radiation, and some of my symptoms can be traced back to EMF hypersensitivity. It's likely why I benefited so much from neurofeedback, as EMFs can affect brainwaves (74-78). 

I suspect a lot of people are dealing with the same problem. 

This research paper explains that there is an association between EMF exposure and myelin deterioration, which may account for many of the symptoms that people with EMF hypersensitivity experience (58).

So if you’re trying to rebuild myelin, it’s a good idea to limit your exposure to EMFs.

How do you that?

I'm still learning about how to manage and combat them, but here are some initial steps you can take:

  • Get an EMF meter to determine your exposure. I use this one. It's the best option that is currently available. It measures electric, magnetic and radiofrequency fields. It's like having three meters in one.

  • Put your phone on airplane mode when you’re not using it. Or use a radiation-blocking phone case such as Safe Sleeve. I did a lot of research into radiation-blocking cases and Safe Sleeve is the best on the market. They are manufactured with materials that have been 3rd-party tested to block 99.9% of radiation coming off a cell phone.

  • Turn off Wi-Fi at night while you’re sleeping.

  • If you have a laptop, don’t touch it. Use a wired keyboard and wired mouse instead.

  • Supplement with the herb Rhodiola. It has radioprotective effects (60-62). I previously wrote about Rhodiola here.

This is just the tip of the iceberg. There are many other steps you can take, and I plan on writing more about this soon because it isn’t discussed enough.

This may seem like “woo-woo” but it’s a real issue. And I suspect it will eventually become one of the biggest issues of our time.

 

Conclusion

You don’t have to let your brain deteriorate over time. 

You have the power to maintain it and rebuild the myelin within it. 

Overall, the above 27 steps can help your body regenerate myelin. They have really helped me.

I hope you implement some of them into your daily life and you notice your brain functions more optimally. 

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874087/

(2) http://www.bbc.com/news/health-23932577

(3) https://www.ncbi.nlm.nih.gov/pubmed/20504680

(4) https://www.ncbi.nlm.nih.gov/pubmed/26401995

(5) https://www.ncbi.nlm.nih.gov/pubmed/3884391

(6) http://www.jbc.org/content/249/1/72.full.pdf

(7) https://www.ncbi.nlm.nih.gov/pubmed/21802524

(8) https://www.ncbi.nlm.nih.gov/pubmed/26725831

(9) https://www.ncbi.nlm.nih.gov/pubmed/1383426

(10) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179190/

(11) https://www.ncbi.nlm.nih.gov/pubmed/3624305/

(12) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649700/

(13) https://www.ncbi.nlm.nih.gov/pubmed/3624305/

(14) http://www.ncbi.nlm.nih.gov/pubmed/22664333

(15) http://www.ncbi.nlm.nih.gov/pubmed/21939673

(16) http://www.ncbi.nlm.nih.gov/pubmed/22673824

(17) https://www.ncbi.nlm.nih.gov/pubmed/1382522

(18) https://www.ncbi.nlm.nih.gov/pubmed/15793579

(19) https://www.ncbi.nlm.nih.gov/pubmed/22355115

(20) https://www.ncbi.nlm.nih.gov/pubmed/18837051             

(21) http://www.ncbi.nlm.nih.gov/pubmed/22017963

(22) http://www.ncbi.nlm.nih.gov/pubmed/21103034

(23) http://www.ncbi.nlm.nih.gov/pubmed/20523044

(24) https://www.ncbi.nlm.nih.gov/pubmed/25933483

(25) https://www.ncbi.nlm.nih.gov/pubmed/18373277

(26) https://www.ncbi.nlm.nih.gov/pubmed/9291163

(27) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237628/

(28) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274763/

(29) https://www.ncbi.nlm.nih.gov/pubmed/24835269

(30) http://wurtmanlab.mit.edu/static/pdf/1037.pdf

(31) https://www.ncbi.nlm.nih.gov/pubmed/18670181

(32) http://jnen.oxfordjournals.org/content/65/1/37.long

(33) https://www.ncbi.nlm.nih.gov/pubmed/12675022

(34) https://www.ncbi.nlm.nih.gov/pubmed/15381788

(35) https://www.ncbi.nlm.nih.gov/pubmed/12628496

(36) https://www.ncbi.nlm.nih.gov/pubmed/24519463

(37) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066079

(38) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486416/

(39) https://www.ncbi.nlm.nih.gov/books/NBK27954/

(40) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820973/

(41) http://www.sciencedirect.com/science/article/pii/0191886994900493

(42) http://www.sciencedirect.com/science/article/pii/0191886994900493

(43) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799635/

(44) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1860500/

(45) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486416/

(46) https://www.ncbi.nlm.nih.gov/pubmed/20856166

(47) https://www.ncbi.nlm.nih.gov/pubmed/27026692

(48) https://www.ncbi.nlm.nih.gov/pubmed/25817255

(49) https://www.ncbi.nlm.nih.gov/pubmed/26826016

(50) https://www.ncbi.nlm.nih.gov/pubmed/15352212

(51) https://www.ncbi.nlm.nih.gov/pubmed/23365095

(52) https://www.ncbi.nlm.nih.gov/pubmed/24634831

(53) http://wurtmanlab.mit.edu/static/pdf/1037.pdf

(54) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772061

(55) https://www.sciencedaily.com/releases/2015/12/151207095956.htm

(56) https://www.ncbi.nlm.nih.gov/pubmed/25261104

(57) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891353/

(58) https://www.ncbi.nlm.nih.gov/m/pubmed/25205214/

(59) http://www.sciencedirect.com/science/article/pii/S0891061815000599

(60) https://www.ncbi.nlm.nih.gov/pubmed/16822199

(61) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148626/

(62) https://www.ncbi.nlm.nih.gov/pubmed/16013456

(63) http://www.ncbi.nlm.nih.gov/pubmed/25524711

(64) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625486/

(65) https://www.ncbi.nlm.nih.gov/pubmed/9482240

(66) http://jnnp.bmj.com/content/early/2008/10/31/jnnp.2008.149286

(67) http://www.lifeextension.com/protocols/neurological/multiple-sclerosis/Page-02

(68) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137939/

(69) https://www.ncbi.nlm.nih.gov/pubmed/641593

(70) https://www.ncbi.nlm.nih.gov/pubmed/20090312

(71) https://www.ncbi.nlm.nih.gov/pubmed/24607226

(72) http://www.sciencedirect.com/science/article/pii/S2211034815000061

(73) http://lpi.oregonstate.edu/mic/vitamins/pantothenic-acid

(74) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459698/

(75) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614696/

(76) https://www.ncbi.nlmnih.gov/pubmed/14995060

(77) https://www.ncbi.nlm.nih.gov/pubmed/12464096

(78) https://www.ncbi.nlm.nih.gov/pubmed/12881192

(79) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065857/

(80) https://www.ncbi.nlm.nih.gov/pubmed/17603852/

(81) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642176/

(82) https://www.ncbi.nlm.nih.gov/pubmed/20976807

(83) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029808/

(84) https://www.ncbi.nlm.nih.gov/pubmed/24848795

(85) https://www.ncbi.nlm.nih.gov/pubmed/16522237

(86) https://www.nature.com/articles/tp201642

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

22 Proven Ways to Increase Brain Blood Flow

Without a doubt, healthy blood flow is absolutely essential for optimal brain function and mental health.

Brain blood flow, or cerebral blood flow, refers to the blood supply that reaches your brain during a given period of time. 

Your brain needs almost 20% of the blood supply provided by each heartbeat.

A steady flow of blood brings oxygen, glucose and nutrients to the brain, and carries carbon dioxide, lactic acid, and other metabolic waste products away from the brain.

But when blood flow to the brain is hindered, cognitive problems can arise.

Poor brain blood flow and circulation are linked to a number of brain and mental illnesses, including:

Increasing blood flow to the brain might be an effective therapeutic approach to prevent or treat Alzheimer’s.
— Dr. Robert Vassar

Some of the main causes of poor brain blood flow include abnormal blood pressure, poor circulation, low thyroid, infections, and stress (126-130). 

Besides addressing these major causes, there are several ways to directly increase the amount of oxygen-rich blood that flows to your brain.

Researchers use neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), to measure cerebral blood flow.

And they have found that the following 21 methods increase brain blood flow and circulation in humans. 

After suffering multiple concussions, I had severe depression and brain fog. So I had no choice but to focus on optimizing brain blood flow and circulation.

Many of these methods have been helpful to me over the years.

If you want to naturally increase blood flow to your brain, continue reading to learn more.

An illustration of a person’s head, their brain, and blood flowing through the brain.

1. Exercise

Exercise is one of the best and most accessible ways to increase brain blood flow and circulation. 

Research shows that moderate exercise increases blood flow to the brain by as much as 15% (1). 

And you don’t even need to work out intensely to increase blood flow to your brain.

Simply walking for 30 minutes at a brisk pace, three or four times each week, is good enough. That will get more blood and oxygen to your brain and you’ll reap the benefits (2). 

In fact, the foot’s impact on the ground while walking sends pressure waves through the arteries, which sends more blood and oxygen to the brain (3). 

There are many studies that suggest that exercise improves brain function in older adults, but we don’t know exactly why the brain improves. Our study indicates it might be tied to an improvement in the supply of blood flow to the brain.
— Dr. Rong Zhang

Exercise has also been shown to protect against cognitive decline and dementia, promote neurogenesis, help reverse brain damage, and promote the regeneration of myelin.

So not surprisingly, exercise is recommended by many experts and it’s often their number one piece of advice for optimal brain health.

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

 

2. Cold Exposure

Exposing yourself to cold temperatures can also help you get more blood flowing to your brain. 

Research shows that putting your hand in ice water for one minute can significantly increase the speed of blood flow to the brain (6-8). 

A tough looking guy with a mustache with his fists up in the air ready to fight. It says over the image “Have a cold shower? You mean a shower?”

Researchers have also found that cooling the skin during upright tilting maintains the speed of blood flow to the brain (5). 

Animal studies also show that cold exposure significantly increases cerebral blood flow (4). 

I take a cold shower every day, and often go outside with minimal clothing in the winter to increase my blood flow and circulation. 

You don’t have to do that right away though. You can take it one baby step at a time.

You can start out by finishing your next shower with just 30 seconds of cold water.

See how you feel, and then work your way up to longer.

It can be a bit painful, but you get used to it and the beneficial effects are worth it.

Another way to ease yourself into it is by sticking your face, hand or foot in ice cold water.

Cold exposure also stimulates the vagus nerve and supports the endocannabinoid system

 

3. Sunlight

A picture of the sun shining through the clouds around it. Sunlight can increase blood flow to the brain.

Research also shows that light stimulates brain blood flow and circulation.

Positron emission technology (PET) measures blood flow to specific areas of the brain.

In one study, researchers used PET scans to monitor cerebral blood flow in patients with season affective disorder (SAD) – before and after light therapy

Before light therapy, the scans show that patients had reduced blood flow to the cerebral cortex, the “executive” part of the brain.

But after just a few days of light therapy, this part of the brain started to light up, indicating greater activity and increased blood flow (9).

But this isn’t just seen in depressed individuals.

Another study found that 10 minutes of light exposure can increase brain blood flow in healthy people (10). 

Light therapy even increases brain blood flow in pre-term infants (11). 

I personally get sunlight every day during the spring and summer months to support my brain health. It’s a simple way for me to increase blood flow to my brain every day.

Researchers have also found a positive correlation between Vitamin D levels and brain blood flow (94).

So I take a Vitamin D3 supplement during the winter months when there isn't enough sun.

It's important to test and monitor your Vitamin D levels before and after supplementing with it.

 

4. Ginkgo Biloba

Ginkgo Biloba is a plant that has been used for thousands of years to treat a number of health problems.

Today, it’s one of the most popular herbal supplements in the world.

Doctors even prescribe it in Germany!

It’s most commonly used to improve brain health.

Researchers have found that it increases cognitive function, and improves memory and attention in both healthy and unhealthy individuals. It even reduces the risk of dementia and Alzheimer’s disease (15). 

These positive effects are mainly because it significantly increases blood flow to the brain and increases blood circulation in the brain (12-14). 

Gingko biloba is included in the Optimal Brain supplement

Click here to subscribe

5. Low-Level Laser Therapy (LLLT)

Low-level laser therapy (LLLT), or photobiomodulation, is a treatment that uses red and infrared light to support brain function.

The treatment uses either low-power lasers or light-emitting diodes (LEDs) that emit red and infrared light.

The red and infrared light is applied to the brain, and it stimulates brain cells, helping them helping them function better.

Most doctors are clueless about LLLT; but not every doctor. 

A man wears on LLLT helmet and uses the Vielight intranasal device. LLLT can increase brain blood circulation and increase blood flow to the brain.

Dr. Norman Doidge, a physician who teaches at the University of Toronto here in Canada, discusses the amazing effects of LLLT in his book The Brain’s Way of Healing.

One way LLLT can help the brain is by increasing brain blood flow and circulation. 

One study found that applying near infrared light to the forehead can help treat depression and anxiety (without side effects) by increasing frontal regional cerebral blood flow (49).

Another study saw improvement in brain blood flow in healthy elderly women (50). 

Animal research has also found that light can be used to locally increase brain blood circulation (93). 

I previously wrote about my experience with low-level laser therapy here.

I use the Optimal 1000 Brain Photobiomodulation Therapy Light (Combo Red/NIR) and shine the red and infrared light directly on my forehead. It’s a simple way for me to quickly and naturally increase blood flow to the brain.

When I’m travelling and away from home, I take this smaller and more convenient device with me and shine it on my forehead.

I’ve also been using the Vielight Neuro Duo, which is a transcranial-intranasal headset with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to try a Vielight device, you can use the coupon code JORDANFALLIS for a 10% discount

LLLT can also support thyroid function and mitochondria function and help with brain fog

 

6. Vinpocetine

Vinpocetine is a compound from the Periwinkle plant. 

It’s commonly used in Europe to treat cognitive decline, memory impairments, stroke recovery, and epilepsy.

Researchers have found that it increases brain blood flow in both healthy people and stroke victims.

The increase in brain blood flow leads to increased brain oxygen levels and energy production, reduced brain inflammation, and improved reaction time (16-25). 

I took a vinpocetine supplement after my last concussion to increase blood flow to the brain and speed up my recovery. But I no longer need to take it.

 

7. Meditation

Meditation is my favourite relaxation technique and it's linked to increased blood flow in the brain.

In one study, 14 people with memory problems followed a simple 8-week meditation program. And researchers found a significant increase in blood flow to the prefrontal cortex (31). 

Logical memory and verbal fluency also improved after training (31). 

Another study showed that just five days of meditation (30 minutes each day) significantly enhanced brain blood flow (32). 

I use the Muse headband to meditate. It gives you real-time feedback while you meditate. That way, you know how well you are meditating. It makes meditating much more enjoyable.

I previously wrote about it here, and you can get it through the Muse website.

 

8. Resveratrol

Resveratrol is a beneficial antioxidant and anti-inflammatory compound.

Many people know that it’s found in grapes, red wine, raspberries and dark chocolate.

A glass of red wine and red grapes. Red wine and red grapes contain resveratrol, an antioxidant that can increase blood flow to the brain.

Resveratrol is known to help prevent the development of neurodegenerative diseases.

And researchers are starting to understand why.

Resveratrol can increase BDNF, help restore the integrity of the blood-brain barrier, and support your mitochondria.

But it can also help you quickly get more blood and oxygen flowing to your brain. 

In one study, after taking either 250 or 500 milligrams of resveratrol, study participants experienced a dose-dependent increase in brain blood flow (26). 

Even just 75 mg has been shown to increase brain circulation and cognition (27, 29). 

And a recent study found that chronic resveratrol supplementation increases brain blood circulation in post-menopausal women, improving their cognition and mood (28, 30). 

Resveratrol is included in this supplement.

 

9. Dark Chocolate

Most people love chocolate, and your brain loves it too. 

Dark chocolate contains cocoa, which is known to improve blood flow. 

It's one of my favourite foods, and it’s included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Research suggests that the flavonoids found in cocoa beans increase blood flow to key areas of the brain for two to three hours after eating them. And this leads to an improvement in cognitive performance and general alertness (33, 35). 

Certain food components like cocoa flavanols may be beneficial in increasing brain blood flow and enhancing brain function among older adults or for others in situations where they may be cognitively impaired, such as fatigue or sleep deprivation.
— Dr. Ian A. Macdonald, PhD, from the University of Nottingham Medical School in the United Kingdom

One study found that flavanol-rich cocoa significant increases the speed of brain blood flow in healthy elderly people (34). 

Another study found that drinking two cups of hot chocolate a day for 30 days was linked to improved blood flow to the brain and better memory (36). 

Dark chocolate also increases BDNF and reduces cortisol.

It’s important to choose a type of dark chocolate with at least 70 percent cocoa.

Click here to subscribe

10. Omega-3 Fatty Acids

Omega-3s fatty acids are the highest quality fats for the brain.

They are essential, meaning your body cannot create them and you have to get them from food or supplements.

Making sure you get more omega-3s is one of the most important actions you can take to support your brain and nervous system.

Many studies show that they significantly reduce brain inflammation; improve memory, mood and cognition; and protect against mild cognitive impairment, dementia and Alzheimer's disease.

They also naturally increase brain blood flow and circulation. 

Research shows that higher omega-3 levels are significantly correlated with higher regional cerebral blood flow (37). 

This is very important research because it shows a correlation between lower omega-3 fatty acid levels and reduced brain blood flow to regions important for learning, memory, depression and dementia.
— Dr. Daniel G. Amen, MD, Amen Clinics

And one study found that omega-3 supplementation, in comparison with placebo, significantly increased brain blood flow (38). 

Omega-3 fatty acids are found in cold water fish such as salmon, black cod, sablefish, sardines and herring.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Unfortunately, most people don't consume enough of these foods.

So supplementing with krill oil should be considered.

Krill oil is a special kind of fish oil that readily crosses the blood-brain barrier. I’ve tried tons of fish oil supplements, and I recommend krill oil over all the others.

 

11. Acupuncture

Acupuncture is an alternative treatment that has been shown to increase brain blood flow and circulation.

In a randomized controlled trial, 17 post-stroke patients did acupuncture or sham acupuncture for 20 minutes.

The researchers found that the speed of blood flow to both hemispheres of the brain significantly increased during and after acupuncture treatment (39, 42). 

Research has also shown that acupuncture can significantly improve cerebral blood flow and circulation in animals (40-41, 43). 

I’m a really big fan of auricular acupuncture, which is when the needles are inserted into ear.

In my experience, ear acupuncture is more effective than regular acupuncture. I’m not sure why. I’ve just personally noticed more benefits from ear acupuncture. 

I’d recommend trying to find an acupuncturist in your area who provides ear acupuncture.

Ear acupuncture really helped me the first time I weened off antidepressants. I was surprised.

At the end of each appointment, my practitioner would secure small black seeds on my ear. 

I also use an acupuncture mat at home to relax before bed.

Acupuncture also stimulates the vagus nerve

 

12. Chewing Gum

Research reveals that chewing increases brain blood flow (44). 

As a result, chewing can improve cognitive performance and brain function, including working and spatial memory. It also increases the level of arousal and alertness during a cognitive task (45). 

If you chew gum, make sure it’s aspartame-free.

Chewing gum also reduces cortisol

 

13. Acetyl-L-Carnitine (ALCAR) 

Acetyl-L-carnitine (ALCAR) is an acetylated form of the amino acid carnitine. 

It’s known to help reverse neurological decline by increasing levels of acetylcholine in the brain.

It’s often used as a brain booster by people of all ages because it support brain cells and increases alertness.

It’s also been shown to be very effective at alleviating chronic fatigue and improving mood by supporting mitochondrial function.

Considering all of this, it’s not too surprising that researchers have also found that it can enhance brain blood flow in people who have had a stroke (46-47). 

I personally find ALCAR improves my mental energy and enhances my cognitive function.

ALCAR is included in the Optimal Brain supplement

Make sure you read this article to learn more about the remarkable benefits of ALCAR.

Click here to subscribe

14. Nitrates

Nitrates are both naturally-occurring compounds found in soil and plants.

High levels of nitrates are found in foods such as beets, celery, cabbage, spinach, and other leafy green vegetables.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Research shows that a nitrate-rich diet can increase blood flow to the frontal lobe of the brain, improving cognitive function and protecting against cognitive decline (51-52). 

Beet juice is a particularly rich source of nitrates, and studies have found that it can help widen blood vessels and increase oxygen and blood flow to the brain (53-54, 56). 

A double-blind, placebo-controlled trial even found that beet juice can improve cognitive performance by increasing brain blood flow (55). 

There have been several very high-profile studies showing that drinking beet juice can lower blood pressure, but we wanted to show that drinking beet juice also increases perfusion, or blood flow, to the brain. There are areas in the brain that become poorly perfused as you age, and that’s believed to be associated with dementia and poor cognition.
— Dr. Daniel Kim-Shapiro, PhD

I don’t really enjoy the taste, but every so often, I do drink beet juice during cognitively-demanding tasks. 

 

15. Drink Less Coffee (Or Take Theanine)

Coffee is generally excellent for brain health. There is a lot of research showing it is very healthy and can be protective against dementia.

However, studies also show that if you want to get more blood flowing to your brain and within you brain, you’re better off avoiding or limiting caffeine. 

A cup of coffee on a plate with a spoon. Coffee and caffeine reduce blood flow to the brain. So you should try to limit your intake of them. Or take it with theanine instead.

Researchers have found that caffeine significantly reduces brain blood flow by 20 to 30% depending on the study and dosage (74-77). 

The good news is that taking the amino acid theanine can reduce the negative brain blood flow effects of caffeine (78-79). 

That’s why I take a theanine supplement when I drink coffee.

Theanine is included in this anti-anxiety supplement.

I also often take breaks from drinking coffee to normalize brain blood flow and circulation. 

Taking the herb rhodiola can make quitting caffeine much easier because it helps reduce withdrawal symptoms.

Lastly, you could also try supplementing with the whole coffee fruit, instead of just drinking coffee.

The coffee bean is usually separated from the coffee fruit for roasting. When this happens, the surrounding coffee fruit is then thrown away. 

That’s a problem because the coffee fruit contains several healthy compounds not found in coffee beans themselves.

In fact, scientists have discovered that ingesting coffee fruit concentrate significantly increases brain function. 

That’s why coffee fruit concentrate is included in Optimal Brain.

 

16. Piracetam

Piracetam is a “nootropic”, which means it’s a supplement that enhances cognition.

It provides a mild boost in brain function, and it’s regularly used in Europe, Asia and South America to treat cognitive impairment

A meta-analysis found that piracetam improves general cognition when supplemented by people in a state of cognitive decline (84). 

Research also shows that it can increase brain blood flow in humans and animals (85-91). 

I used to take piracetam every day but I don’t need it at all anymore.

Phenylpiracetam is an advanced version of piracetam and I found it to be even better because it improves mood and reduces anxiety. It’s also been shown to reverse the depressant effects of benzodiazepines (81-83).

Both piracetam and phenylpiracetam work best if you take them with a source of choline, such as CDP-Choline and Alpha GPC (80). 

 

17. Ketogenic Dieting

A ketogenic diet is a very low-carbohydrate diet.

To follow the diet correctly, you need to eat less than 50 grams of carbohydrates per day.

This means you need to avoid all carbohydrate-rich foods, including grains, sugar, and even potatoes, legumes and fruit.

When you restrict carbs this much, your body enters ketosis, a metabolic state in which your body and brain run on fatty acids and “ketones” instead of glucose.

Researchers have found that ketones are a therapeutic option in traumatic brain injury because they can increase brain blood flow by 39% (100). 

Studies have also shown that ketones increase cerebral blood flow by 65% in animals (103-104). 

Caloric restriction also increases ketones, which preserves cerebral blood flow in aging rats (102). 

I follow a ketogenic diet every so often, but not for long stretches of time due to hormone problems that can result from it.

 

18. Citicoline

Citicoline (also known as CDP-Choline) is one of the most bioavailable forms of choline.

You need to get choline from food. But most people don’t get enough because very few foods in the Western diet contain it.

That’s why supplementation is often necessary.

Citicoline is a supplemental form of choline that has anti-inflammatory and neuroprotective effects.

It enhances the synthesis of acetylcholine and dopamine (two neurotransmitters that are critical for optimal brain function) and increases the number of acetylcholine and dopamine receptors in your brain (105-110). 

It’s also been shown to improve cognitive function by increasing the rate of brain blood flow (114-116). 

A double-blind placebo-controlled study concluded that Citicoline improves cognitive performance in patients with Alzheimer’s disease by increasing brain blood flow (113). 

I personally have found that citicoline improves my focus and mental energy. It's included in the Optimal Brain supplement

You can also find some choline in foods such as beef liver and egg yolks. These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

But the effects of Citicoline are much more noticeable and immediate because it quickly passes the blood-brain barrier and supports your brain.  

Citicoline also promotes the regeneration of myelin, supports the blood-brain barrier, and helps reverse brain damage.

Make sure you read this article to learn more about the remarkable benefits of Citicoline.

Click here to subscribe

19. Blueberry Juice

Drinking blueberry juice improves cognitive function in the elderly, according to research published (123-125). 

One way it improved brain health was by increasing oxygen levels and increasing blood flow to the brain.

The participants had improvements in working memory while doing cognitive testing.

In this study we have shown that with just 12 weeks of consuming 30ml of concentrated blueberry juice every day, brain blood flow, brain activation and some aspects of working memory were improved in this group of healthy older adults.
— Dr. Joanna Bowtell

The amount of juice in the study was equivalent to 230g of blueberries.

The researchers believe that the flavonoids in blueberries were responsible for the positive effects.  

 

20. Pyrroloquinoline Quinone (PQQ)

Pyrroloquinoline quinone (PQQ) is a vitamin-like enzyme and potent antioxidant found in plant foods that can improve cognitive function.

Researchers have found that supplementing with PQQ can increase blood flow to the prefrontal cortex (117-118). 

One study found that PQQ can prevent the reduction of brain function in elderly people, especially in attention and working memory, by increasing brain blood flow (119). 

 

21. Intranasal Insulin

Insulin is one of the hormones that significantly affects brain function.

It's been shown to pass the blood-brain barrier and act on insulin receptors directly within the brain.

An elderly man sprays insulin up his nose. Intranasal insulin has been shown to increase blood flow to the brain.

In a new therapeutic approach, commercially-available insulin (Novalin R) is prepared and added to nasal spray bottles, and sprayed and inhaled through the nose to support brain and mental health.

Intranasal insulin has been reported to significantly enhance memory, increase mental energy, reduce brain fog, improve mood, and lower anxiety and stress levels.

One possible mechanism is by increasing brain blood flow and circulation.

Research shows that intranasal insulin increases regional cerebral blood flow in the insular cortex (120, 122). 

In a randomized, double-blinded, placebo-controlled, intranasal insulin improved brain blood flow in older adults (121).

If you’re interested in learning more, I previously wrote a full article about intranasal insulin.

 

22. Music

I previously wrote about how music naturally reduces cortisol, helps treat OCD, and increases dopamine and oxytocin

But now it looks like it also increases blood flow to the brain.

Researchers found that musical training or listening to music increases blood flow to the brain (145-146).

It’s even more effective when you’re learning or listening to music that you really enjoy.

 

23. BONUS: Other Promising Nutrients and Herbs

Researchers have found that the following compounds can increase cerebral blood flow in animals. But I couldn’t find any research showing that it will do the same in humans. However, they are worth experimenting with as many of them have been effective at supporting my brain and mental health over the years.

A picture of the brain and nervous system.
 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) http://www.the-aps.org/mm/hp/Audiences/Public-Press/Archive/2011/9.html

(2) https://www.sciencedaily.com/releases/2011/04/110412131921.htm

(3) http://www.nmhu.edu/research-shows-walking-increases-blood-flow-brain/

(4) https://www.ncbi.nlm.nih.gov/pubmed/754495

(5) https://www.ncbi.nlm.nih.gov/pubmed/12070190

(6) https://www.ncbi.nlm.nih.gov/pubmed/8706113

(7) https://www.ncbi.nlm.nih.gov/pubmed/22104537

(8) https://www.ncbi.nlm.nih.gov/pubmed/27206903

(9) https://goo.gl/NKCSF1

(10) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819153/

(11) http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8749.2004.tb00460.x/abstract

(12) https://www.ncbi.nlm.nih.gov/pubmed/12905098

(13) http://www.ncbi.nlm.nih.gov/pubmed/25966264

(14) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163160/

(15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679686/

(16) https://examine.com/supplements/vinpocetine/

(17) https://www.ncbi.nlm.nih.gov/pubmed/15760651

(18) https://www.ncbi.nlm.nih.gov/pubmed/12498034

(19) https://www.ncbi.nlm.nih.gov/pubmed/12460136

(20) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1429914/

(21) https://www.ncbi.nlm.nih.gov/pubmed/12044859

(22) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274818/

(23) https://www.ncbi.nlm.nih.gov/pubmed/23289173

(24) https://www.ncbi.nlm.nih.gov/pubmed/25548768

(25) https://www.ncbi.nlm.nih.gov/pubmed/19135345

(26) https://www.ncbi.nlm.nih.gov/pubmed/20357044

(27) https://www.ncbi.nlm.nih.gov/pubmed/27105868

(28) https://www.ncbi.nlm.nih.gov/pubmed/28054939

(29) https://www.ncbi.nlm.nih.gov/pubmed/27420093

(30) https://www.ncbi.nlm.nih.gov/pubmed/27005658

(31) https://www.ncbi.nlm.nih.gov/pubmed/20164557

(32) http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00212/full

(33) http://www.medsci.org/press/cocoa.html

(34) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518374/

(35) https://www.ncbi.nlm.nih.gov/pubmed/16794461

(36) https://www.eurekalert.org/pub_releases/2013-08/aaon-cmh073113.php

(37) https://www.ncbi.nlm.nih.gov/pubmed/28527220

(38) http://www.sciencedirect.com/science/article/pii/S0301051111002584

(39) https://www.ncbi.nlm.nih.gov/pubmed/26569545

(40) https://www.ncbi.nlm.nih.gov/pubmed/19358505

(41) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056736

(42) https://goo.gl/XZqLQd

(43) https://www.ncbi.nlm.nih.gov/pubmed/24006668

(44) https://www.ncbi.nlm.nih.gov/pubmed/9134116

(45) http://www.medsci.org/v11p0209.htm

(46) https://www.ncbi.nlm.nih.gov/pubmed/2068049

(47) https://www.ncbi.nlm.nih.gov/pubmed/2387659

(48) http://www.sciencedirect.com/science/article/pii/S1673537407600383

(49) https://www.ncbi.nlm.nih.gov/pubmed/19995444

(50) https://www.ncbi.nlm.nih.gov/pubmed/25277249

(51) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575935/

(52) http://www.webmd.com/brain/news/20101103/beet-juice-good-for-brain#1

(53) https://goo.gl/oeTwfb

(54) http://www.webmd.com/brain/news/20101103/beet-juice-good-for-brain#1

(55) https://www.ncbi.nlm.nih.gov/pubmed/26037632

(56) https://www.ncbi.nlm.nih.gov/pubmed/27630836

(57) https://www.ncbi.nlm.nih.gov/pubmed/16912655

(58) https://www.ncbi.nlm.nih.gov/pubmed/17459424

(59) https://www.ncbi.nlm.nih.gov/pubmed/12614590

(60) http://www.sciencedirect.com/science/article/pii/S0026286207000258

(61) http://onlinelibrary.wiley.com/doi/10.1002/ana.410150507/abstract

(62) https://www.sciencedaily.com/releases/2014/04/140429085116.htm

(63) https://goo.gl/x39wBK

(64) http://journals.sagepub.com/doi/abs/10.1038/jcbfm.2011.85

(65) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746283/

(66) https://www.ncbi.nlm.nih.gov/pubmed/22447676

(67) http://www.sciencedirect.com/science/article/pii/S0024320509004627

(68) https://www.ncbi.nlm.nih.gov/pubmed/19925811

(69) https://www.ncbi.nlm.nih.gov/pubmed/12466053

(70) https://goo.gl/JLo2KP

(71) https://www.ncbi.nlm.nih.gov/pubmed/23685189

(72) https://www.ncbi.nlm.nih.gov/pubmed/28325558

(73) https://goo.gl/ffuYWA

(74) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748160/

(75) https://www.ncbi.nlm.nih.gov/pubmed/15132312/

(76) https://www.ncbi.nlm.nih.gov/pubmed/2122148/

(77) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677118/

(78) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480845/

(79) https://www.ncbi.nlm.nih.gov/pubmed/25761837

(80) https://www.ncbi.nlm.nih.gov/pubmed/7301036

(81) https://link.springer.com/article/10.2165/11319230-000000000-00000

(82) https://www.ncbi.nlm.nih.gov/pubmed/21689376

(83) https://www.ncbi.nlm.nih.gov/pubmed/6403074

(84) https://examine.com/supplements/piracetam/

(85) https://www.ncbi.nlm.nih.gov/pubmed/3556550

(86) https://www.ncbi.nlm.nih.gov/pubmed/21183904

(87) https://goo.gl/Uf4XQU

(88) https://www.ncbi.nlm.nih.gov/pubmed/4026900

(89) https://www.ncbi.nlm.nih.gov/pubmed/8876930

(90) https://www.ncbi.nlm.nih.gov/pubmed/10978039

(91) https://www.ncbi.nlm.nih.gov/pubmed/17523446

(92) https://goo.gl/JYEMNd

(93) https://www.nature.com/articles/ncomms14191

(94) https://www.ncbi.nlm.nih.gov/pubmed/22773150

(95) https://www.ncbi.nlm.nih.gov/pubmed/3810733

(96) https://www.ncbi.nlm.nih.gov/pubmed/3446252

(97) https://www.ncbi.nlm.nih.gov/pubmed/20096732

(98) https://goo.gl/rHW2KD

(99) https://www.ncbi.nlm.nih.gov/pubmed/27156064

(100) https://www.ncbi.nlm.nih.gov/pubmed/8967461

(101) https://ccforum.biomedcentral.com/articles/10.1186/cc10020

(102) https://goo.gl/KRZ9oy

(103) https://www.ncbi.nlm.nih.gov/pubmed/16001018

(104) http://journals.sagepub.com/doi/full/10.1038/sj.jcbfm.9600177

(105) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695184/

(106) http://www.ncbi.nlm.nih.gov/pubmed/11796739

(107) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1430829/

(108) https://www.ncbi.nlm.nih.gov/pubmed/1839138

(109) https://www.ncbi.nlm.nih.gov/pubmed/1098982

(110) http://www.ncbi.nlm.nih.gov/pubmed/19351232

(111) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011061/

(112) https://www.ncbi.nlm.nih.gov/pubmed/16055952

(113) https://www.ncbi.nlm.nih.gov/pubmed/10669911

(114) https://www.ncbi.nlm.nih.gov/pubmed/1098982

(115) https://www.ncbi.nlm.nih.gov/pubmed/7820960

(116) https://www.ncbi.nlm.nih.gov/pubmed/7913981/

(117) https://link.springer.com/chapter/10.1007/978-3-319-38810-6_29

(118) https://www.ncbi.nlm.nih.gov/pubmed/27526146

(119) https://www.ncbi.nlm.nih.gov/pubmed/26782228

(120) https://www.ncbi.nlm.nih.gov/pubmed/23907764

(121) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391232/

(122) http://onlinelibrary.wiley.com/doi/10.1002/hbm.22304/abstract

(123) https://www.ncbi.nlm.nih.gov/pubmed/28249119

(124) http://www.exeter.ac.uk/news/featurednews/title_572581_en.html

(125) https://www.sciencedaily.com/releases/2017/03/170307100356.htm

(126) https://www.ncbi.nlm.nih.gov/pubmed/20453669

(127) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539653/

(128) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246784/

(129) https://www.ncbi.nlm.nih.gov/pubmed/15118175

(130) https://www.ncbi.nlm.nih.gov/pubmed/14757593

(131) https://www.ncbi.nlm.nih.gov/pubmed/28155036

(132) https://www.ncbi.nlm.nih.gov/pubmed/28506213

(133) https://www.ncbi.nlm.nih.gov/pubmed/15929050

(134) https://www.ncbi.nlm.nih.gov/pubmed/17088679

(135) https://www.ncbi.nlm.nih.gov/pubmed/10867218

(136) https://www.ncbi.nlm.nih.gov/pubmed/9682941

(137) http://jamanetwork.com/journals/jamapsychiatry/fullarticle/481961

(138) https://www.ncbi.nlm.nih.gov/pubmed/12742675

(139) https://www.ncbi.nlm.nih.gov/pubmed/9373423

(140) https://www.ncbi.nlm.nih.gov/pubmed/21167506

(141) https://www.ncbi.nlm.nih.gov/pubmed/7496746

(142) https://www.ncbi.nlm.nih.gov/pubmed/1919689

(143) http://neuro.psychiatryonline.org/doi/abs/10.1176/jnp.15.3.326

(144) http://jamanetwork.com/journals/jamaneurology/fullarticle/783869

(145) https://www.sciencedaily.com/releases/2017/04/170412181341.htm

(146) https://www.medicalnewstoday.com/articles/276595

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer