22 Proven Ways to Increase Brain Blood Flow

Without a doubt, healthy blood flow is absolutely essential for optimal brain function and mental health.

Brain blood flow, or cerebral blood flow, refers to the blood supply that reaches your brain during a given period of time. 

Your brain needs almost 20% of the blood supply provided by each heartbeat.

A steady flow of blood brings oxygen, glucose and nutrients to the brain, and carries carbon dioxide, lactic acid, and other metabolic waste products away from the brain.

But when blood flow to the brain is hindered, cognitive problems can arise.

Poor brain blood flow and circulation are linked to a number of brain and mental illnesses, including:

Increasing blood flow to the brain might be an effective therapeutic approach to prevent or treat Alzheimer’s.
— Dr. Robert Vassar

Some of the main causes of poor brain blood flow include abnormal blood pressure, poor circulation, low thyroid, infections, and stress (126-130). 

Besides addressing these major causes, there are several ways to directly increase the amount of oxygen-rich blood that flows to your brain.

Researchers use neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), to measure cerebral blood flow.

And they have found that the following 21 methods increase brain blood flow and circulation in humans. 

After suffering multiple concussions, I had severe depression and brain fog. So I had no choice but to focus on optimizing brain blood flow and circulation.

Many of these methods have been helpful to me over the years.

If you want to naturally increase blood flow to your brain, continue reading to learn more.

An illustration of a person’s head, their brain, and blood flowing through the brain.

1. Exercise

Exercise is one of the best and most accessible ways to increase brain blood flow and circulation. 

Research shows that moderate exercise increases blood flow to the brain by as much as 15% (1). 

And you don’t even need to work out intensely to increase blood flow to your brain.

Simply walking for 30 minutes at a brisk pace, three or four times each week, is good enough. That will get more blood and oxygen to your brain and you’ll reap the benefits (2). 

In fact, the foot’s impact on the ground while walking sends pressure waves through the arteries, which sends more blood and oxygen to the brain (3). 

There are many studies that suggest that exercise improves brain function in older adults, but we don’t know exactly why the brain improves. Our study indicates it might be tied to an improvement in the supply of blood flow to the brain.
— Dr. Rong Zhang

Exercise has also been shown to protect against cognitive decline and dementia, promote neurogenesis, help reverse brain damage, and promote the regeneration of myelin.

So not surprisingly, exercise is recommended by many experts and it’s often their number one piece of advice for optimal brain health.

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

 

2. Cold Exposure

Exposing yourself to cold temperatures can also help you get more blood flowing to your brain. 

Research shows that putting your hand in ice water for one minute can significantly increase the speed of blood flow to the brain (6-8). 

A tough looking guy with a mustache with his fists up in the air ready to fight. It says over the image “Have a cold shower? You mean a shower?”

Researchers have also found that cooling the skin during upright tilting maintains the speed of blood flow to the brain (5). 

Animal studies also show that cold exposure significantly increases cerebral blood flow (4). 

I take a cold shower every day, and often go outside with minimal clothing in the winter to increase my blood flow and circulation. 

You don’t have to do that right away though. You can take it one baby step at a time.

You can start out by finishing your next shower with just 30 seconds of cold water.

See how you feel, and then work your way up to longer.

It can be a bit painful, but you get used to it and the beneficial effects are worth it.

Another way to ease yourself into it is by sticking your face, hand or foot in ice cold water.

Cold exposure also stimulates the vagus nerve and supports the endocannabinoid system

 

3. Sunlight

A picture of the sun shining through the clouds around it. Sunlight can increase blood flow to the brain.

Research also shows that light stimulates brain blood flow and circulation.

Positron emission technology (PET) measures blood flow to specific areas of the brain.

In one study, researchers used PET scans to monitor cerebral blood flow in patients with season affective disorder (SAD) – before and after light therapy

Before light therapy, the scans show that patients had reduced blood flow to the cerebral cortex, the “executive” part of the brain.

But after just a few days of light therapy, this part of the brain started to light up, indicating greater activity and increased blood flow (9).

But this isn’t just seen in depressed individuals.

Another study found that 10 minutes of light exposure can increase brain blood flow in healthy people (10). 

Light therapy even increases brain blood flow in pre-term infants (11). 

I personally get sunlight every day during the spring and summer months to support my brain health. It’s a simple way for me to increase blood flow to my brain every day.

Researchers have also found a positive correlation between Vitamin D levels and brain blood flow (94).

So I take a Vitamin D3 supplement during the winter months when there isn't enough sun.

It's important to test and monitor your Vitamin D levels before and after supplementing with it.

 

4. Ginkgo Biloba

Ginkgo Biloba is a plant that has been used for thousands of years to treat a number of health problems.

Today, it’s one of the most popular herbal supplements in the world.

Doctors even prescribe it in Germany!

It’s most commonly used to improve brain health.

Researchers have found that it increases cognitive function, and improves memory and attention in both healthy and unhealthy individuals. It even reduces the risk of dementia and Alzheimer’s disease (15). 

These positive effects are mainly because it significantly increases blood flow to the brain and increases blood circulation in the brain (12-14). 

Gingko biloba is included in the Optimal Brain supplement

Click here to subscribe

5. Low-Level Laser Therapy (LLLT)

Low-level laser therapy (LLLT), or photobiomodulation, is a treatment that uses red and infrared light to support brain function.

The treatment uses either low-power lasers or light-emitting diodes (LEDs) that emit red and infrared light.

The red and infrared light is applied to the brain, and it stimulates brain cells, helping them helping them function better.

Most doctors are clueless about LLLT; but not every doctor. 

A man wears on LLLT helmet and uses the Vielight intranasal device. LLLT can increase brain blood circulation and increase blood flow to the brain.

Dr. Norman Doidge, a physician who teaches at the University of Toronto here in Canada, discusses the amazing effects of LLLT in his book The Brain’s Way of Healing.

One way LLLT can help the brain is by increasing brain blood flow and circulation. 

One study found that applying near infrared light to the forehead can help treat depression and anxiety (without side effects) by increasing frontal regional cerebral blood flow (49).

Another study saw improvement in brain blood flow in healthy elderly women (50). 

Animal research has also found that light can be used to locally increase brain blood circulation (93). 

I previously wrote about my experience with low-level laser therapy here.

I use the Optimal 1000 Brain Photobiomodulation Therapy Light (Combo Red/NIR) and shine the red and infrared light directly on my forehead. It’s a simple way for me to quickly and naturally increase blood flow to the brain.

When I’m travelling and away from home, I take this smaller and more convenient device with me and shine it on my forehead.

I’ve also been using the Vielight Neuro Duo, which is a transcranial-intranasal headset with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to try a Vielight device, you can use the coupon code JORDANFALLIS for a 10% discount

LLLT can also support thyroid function and mitochondria function and help with brain fog

 

6. Vinpocetine

Vinpocetine is a compound from the Periwinkle plant. 

It’s commonly used in Europe to treat cognitive decline, memory impairments, stroke recovery, and epilepsy.

Researchers have found that it increases brain blood flow in both healthy people and stroke victims.

The increase in brain blood flow leads to increased brain oxygen levels and energy production, reduced brain inflammation, and improved reaction time (16-25). 

I took a vinpocetine supplement after my last concussion to increase blood flow to the brain and speed up my recovery. But I no longer need to take it.

 

7. Meditation

Meditation is my favourite relaxation technique and it's linked to increased blood flow in the brain.

In one study, 14 people with memory problems followed a simple 8-week meditation program. And researchers found a significant increase in blood flow to the prefrontal cortex (31). 

Logical memory and verbal fluency also improved after training (31). 

Another study showed that just five days of meditation (30 minutes each day) significantly enhanced brain blood flow (32). 

I use the Muse headband to meditate. It gives you real-time feedback while you meditate. That way, you know how well you are meditating. It makes meditating much more enjoyable.

I previously wrote about it here, and you can get it through the Muse website.

 

8. Resveratrol

Resveratrol is a beneficial antioxidant and anti-inflammatory compound.

Many people know that it’s found in grapes, red wine, raspberries and dark chocolate.

A glass of red wine and red grapes. Red wine and red grapes contain resveratrol, an antioxidant that can increase blood flow to the brain.

Resveratrol is known to help prevent the development of neurodegenerative diseases.

And researchers are starting to understand why.

Resveratrol can increase BDNF, help restore the integrity of the blood-brain barrier, and support your mitochondria.

But it can also help you quickly get more blood and oxygen flowing to your brain. 

In one study, after taking either 250 or 500 milligrams of resveratrol, study participants experienced a dose-dependent increase in brain blood flow (26). 

Even just 75 mg has been shown to increase brain circulation and cognition (27, 29). 

And a recent study found that chronic resveratrol supplementation increases brain blood circulation in post-menopausal women, improving their cognition and mood (28, 30). 

Resveratrol is included in this supplement.

 

9. Dark Chocolate

Most people love chocolate, and your brain loves it too. 

Dark chocolate contains cocoa, which is known to improve blood flow. 

It's one of my favourite foods, and it’s included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Research suggests that the flavonoids found in cocoa beans increase blood flow to key areas of the brain for two to three hours after eating them. And this leads to an improvement in cognitive performance and general alertness (33, 35). 

Certain food components like cocoa flavanols may be beneficial in increasing brain blood flow and enhancing brain function among older adults or for others in situations where they may be cognitively impaired, such as fatigue or sleep deprivation.
— Dr. Ian A. Macdonald, PhD, from the University of Nottingham Medical School in the United Kingdom

One study found that flavanol-rich cocoa significant increases the speed of brain blood flow in healthy elderly people (34). 

Another study found that drinking two cups of hot chocolate a day for 30 days was linked to improved blood flow to the brain and better memory (36). 

Dark chocolate also increases BDNF and reduces cortisol.

It’s important to choose a type of dark chocolate with at least 70 percent cocoa.

Click here to subscribe

10. Omega-3 Fatty Acids

Omega-3s fatty acids are the highest quality fats for the brain.

They are essential, meaning your body cannot create them and you have to get them from food or supplements.

Making sure you get more omega-3s is one of the most important actions you can take to support your brain and nervous system.

Many studies show that they significantly reduce brain inflammation; improve memory, mood and cognition; and protect against mild cognitive impairment, dementia and Alzheimer's disease.

They also naturally increase brain blood flow and circulation. 

Research shows that higher omega-3 levels are significantly correlated with higher regional cerebral blood flow (37). 

This is very important research because it shows a correlation between lower omega-3 fatty acid levels and reduced brain blood flow to regions important for learning, memory, depression and dementia.
— Dr. Daniel G. Amen, MD, Amen Clinics

And one study found that omega-3 supplementation, in comparison with placebo, significantly increased brain blood flow (38). 

Omega-3 fatty acids are found in cold water fish such as salmon, black cod, sablefish, sardines and herring.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Unfortunately, most people don't consume enough of these foods.

So supplementing with krill oil should be considered.

Krill oil is a special kind of fish oil that readily crosses the blood-brain barrier. I’ve tried tons of fish oil supplements, and I recommend krill oil over all the others.

 

11. Acupuncture

Acupuncture is an alternative treatment that has been shown to increase brain blood flow and circulation.

In a randomized controlled trial, 17 post-stroke patients did acupuncture or sham acupuncture for 20 minutes.

The researchers found that the speed of blood flow to both hemispheres of the brain significantly increased during and after acupuncture treatment (39, 42). 

Research has also shown that acupuncture can significantly improve cerebral blood flow and circulation in animals (40-41, 43). 

I’m a really big fan of auricular acupuncture, which is when the needles are inserted into ear.

In my experience, ear acupuncture is more effective than regular acupuncture. I’m not sure why. I’ve just personally noticed more benefits from ear acupuncture. 

I’d recommend trying to find an acupuncturist in your area who provides ear acupuncture.

Ear acupuncture really helped me the first time I weened off antidepressants. I was surprised.

At the end of each appointment, my practitioner would secure small black seeds on my ear. 

I also use an acupuncture mat at home to relax before bed.

Acupuncture also stimulates the vagus nerve

 

12. Chewing Gum

Research reveals that chewing increases brain blood flow (44). 

As a result, chewing can improve cognitive performance and brain function, including working and spatial memory. It also increases the level of arousal and alertness during a cognitive task (45). 

If you chew gum, make sure it’s aspartame-free.

Chewing gum also reduces cortisol

 

13. Acetyl-L-Carnitine (ALCAR) 

Acetyl-L-carnitine (ALCAR) is an acetylated form of the amino acid carnitine. 

It’s known to help reverse neurological decline by increasing levels of acetylcholine in the brain.

It’s often used as a brain booster by people of all ages because it support brain cells and increases alertness.

It’s also been shown to be very effective at alleviating chronic fatigue and improving mood by supporting mitochondrial function.

Considering all of this, it’s not too surprising that researchers have also found that it can enhance brain blood flow in people who have had a stroke (46-47). 

I personally find ALCAR improves my mental energy and enhances my cognitive function.

ALCAR is included in the Optimal Brain supplement

Make sure you read this article to learn more about the remarkable benefits of ALCAR.

Click here to subscribe

14. Nitrates

Nitrates are both naturally-occurring compounds found in soil and plants.

High levels of nitrates are found in foods such as beets, celery, cabbage, spinach, and other leafy green vegetables.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Research shows that a nitrate-rich diet can increase blood flow to the frontal lobe of the brain, improving cognitive function and protecting against cognitive decline (51-52). 

Beet juice is a particularly rich source of nitrates, and studies have found that it can help widen blood vessels and increase oxygen and blood flow to the brain (53-54, 56). 

A double-blind, placebo-controlled trial even found that beet juice can improve cognitive performance by increasing brain blood flow (55). 

There have been several very high-profile studies showing that drinking beet juice can lower blood pressure, but we wanted to show that drinking beet juice also increases perfusion, or blood flow, to the brain. There are areas in the brain that become poorly perfused as you age, and that’s believed to be associated with dementia and poor cognition.
— Dr. Daniel Kim-Shapiro, PhD

I don’t really enjoy the taste, but every so often, I do drink beet juice during cognitively-demanding tasks. 

 

15. Drink Less Coffee (Or Take Theanine)

Coffee is generally excellent for brain health. There is a lot of research showing it is very healthy and can be protective against dementia.

However, studies also show that if you want to get more blood flowing to your brain and within you brain, you’re better off avoiding or limiting caffeine. 

A cup of coffee on a plate with a spoon. Coffee and caffeine reduce blood flow to the brain. So you should try to limit your intake of them. Or take it with theanine instead.

Researchers have found that caffeine significantly reduces brain blood flow by 20 to 30% depending on the study and dosage (74-77). 

The good news is that taking the amino acid theanine can reduce the negative brain blood flow effects of caffeine (78-79). 

That’s why I take a theanine supplement when I drink coffee.

Theanine is included in this anti-anxiety supplement.

I also often take breaks from drinking coffee to normalize brain blood flow and circulation. 

Taking the herb rhodiola can make quitting caffeine much easier because it helps reduce withdrawal symptoms.

Lastly, you could also try supplementing with the whole coffee fruit, instead of just drinking coffee.

The coffee bean is usually separated from the coffee fruit for roasting. When this happens, the surrounding coffee fruit is then thrown away. 

That’s a problem because the coffee fruit contains several healthy compounds not found in coffee beans themselves.

In fact, scientists have discovered that ingesting coffee fruit concentrate significantly increases brain function. 

That’s why coffee fruit concentrate is included in Optimal Brain.

 

16. Piracetam

Piracetam is a “nootropic”, which means it’s a supplement that enhances cognition.

It provides a mild boost in brain function, and it’s regularly used in Europe, Asia and South America to treat cognitive impairment

A meta-analysis found that piracetam improves general cognition when supplemented by people in a state of cognitive decline (84). 

Research also shows that it can increase brain blood flow in humans and animals (85-91). 

I used to take piracetam every day but I don’t need it at all anymore.

Phenylpiracetam is an advanced version of piracetam and I found it to be even better because it improves mood and reduces anxiety. It’s also been shown to reverse the depressant effects of benzodiazepines (81-83).

Both piracetam and phenylpiracetam work best if you take them with a source of choline, such as CDP-Choline and Alpha GPC (80). 

 

17. Ketogenic Dieting

A ketogenic diet is a very low-carbohydrate diet.

To follow the diet correctly, you need to eat less than 50 grams of carbohydrates per day.

This means you need to avoid all carbohydrate-rich foods, including grains, sugar, and even potatoes, legumes and fruit.

When you restrict carbs this much, your body enters ketosis, a metabolic state in which your body and brain run on fatty acids and “ketones” instead of glucose.

Researchers have found that ketones are a therapeutic option in traumatic brain injury because they can increase brain blood flow by 39% (100). 

Studies have also shown that ketones increase cerebral blood flow by 65% in animals (103-104). 

Caloric restriction also increases ketones, which preserves cerebral blood flow in aging rats (102). 

I follow a ketogenic diet every so often, but not for long stretches of time due to hormone problems that can result from it.

 

18. Citicoline

Citicoline (also known as CDP-Choline) is one of the most bioavailable forms of choline.

You need to get choline from food. But most people don’t get enough because very few foods in the Western diet contain it.

That’s why supplementation is often necessary.

Citicoline is a supplemental form of choline that has anti-inflammatory and neuroprotective effects.

It enhances the synthesis of acetylcholine and dopamine (two neurotransmitters that are critical for optimal brain function) and increases the number of acetylcholine and dopamine receptors in your brain (105-110). 

It’s also been shown to improve cognitive function by increasing the rate of brain blood flow (114-116). 

A double-blind placebo-controlled study concluded that Citicoline improves cognitive performance in patients with Alzheimer’s disease by increasing brain blood flow (113). 

I personally have found that citicoline improves my focus and mental energy. It's included in the Optimal Brain supplement

You can also find some choline in foods such as beef liver and egg yolks. These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

But the effects of Citicoline are much more noticeable and immediate because it quickly passes the blood-brain barrier and supports your brain.  

Citicoline also promotes the regeneration of myelin, supports the blood-brain barrier, and helps reverse brain damage.

Make sure you read this article to learn more about the remarkable benefits of Citicoline.

Click here to subscribe

19. Blueberry Juice

Drinking blueberry juice improves cognitive function in the elderly, according to research published (123-125). 

One way it improved brain health was by increasing oxygen levels and increasing blood flow to the brain.

The participants had improvements in working memory while doing cognitive testing.

In this study we have shown that with just 12 weeks of consuming 30ml of concentrated blueberry juice every day, brain blood flow, brain activation and some aspects of working memory were improved in this group of healthy older adults.
— Dr. Joanna Bowtell

The amount of juice in the study was equivalent to 230g of blueberries.

The researchers believe that the flavonoids in blueberries were responsible for the positive effects.  

 

20. Pyrroloquinoline Quinone (PQQ)

Pyrroloquinoline quinone (PQQ) is a vitamin-like enzyme and potent antioxidant found in plant foods that can improve cognitive function.

Researchers have found that supplementing with PQQ can increase blood flow to the prefrontal cortex (117-118). 

One study found that PQQ can prevent the reduction of brain function in elderly people, especially in attention and working memory, by increasing brain blood flow (119). 

 

21. Intranasal Insulin

Insulin is one of the hormones that significantly affects brain function.

It's been shown to pass the blood-brain barrier and act on insulin receptors directly within the brain.

An elderly man sprays insulin up his nose. Intranasal insulin has been shown to increase blood flow to the brain.

In a new therapeutic approach, commercially-available insulin (Novalin R) is prepared and added to nasal spray bottles, and sprayed and inhaled through the nose to support brain and mental health.

Intranasal insulin has been reported to significantly enhance memory, increase mental energy, reduce brain fog, improve mood, and lower anxiety and stress levels.

One possible mechanism is by increasing brain blood flow and circulation.

Research shows that intranasal insulin increases regional cerebral blood flow in the insular cortex (120, 122). 

In a randomized, double-blinded, placebo-controlled, intranasal insulin improved brain blood flow in older adults (121).

If you’re interested in learning more, I previously wrote a full article about intranasal insulin.

 

22. Music

I previously wrote about how music naturally reduces cortisol, helps treat OCD, and increases dopamine and oxytocin

But now it looks like it also increases blood flow to the brain.

Researchers found that musical training or listening to music increases blood flow to the brain (145-146).

It’s even more effective when you’re learning or listening to music that you really enjoy.

 

23. BONUS: Other Promising Nutrients and Herbs

Researchers have found that the following compounds can increase cerebral blood flow in animals. But I couldn’t find any research showing that it will do the same in humans. However, they are worth experimenting with as many of them have been effective at supporting my brain and mental health over the years.

A picture of the brain and nervous system.
 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) http://www.the-aps.org/mm/hp/Audiences/Public-Press/Archive/2011/9.html

(2) https://www.sciencedaily.com/releases/2011/04/110412131921.htm

(3) http://www.nmhu.edu/research-shows-walking-increases-blood-flow-brain/

(4) https://www.ncbi.nlm.nih.gov/pubmed/754495

(5) https://www.ncbi.nlm.nih.gov/pubmed/12070190

(6) https://www.ncbi.nlm.nih.gov/pubmed/8706113

(7) https://www.ncbi.nlm.nih.gov/pubmed/22104537

(8) https://www.ncbi.nlm.nih.gov/pubmed/27206903

(9) https://goo.gl/NKCSF1

(10) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819153/

(11) http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8749.2004.tb00460.x/abstract

(12) https://www.ncbi.nlm.nih.gov/pubmed/12905098

(13) http://www.ncbi.nlm.nih.gov/pubmed/25966264

(14) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163160/

(15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679686/

(16) https://examine.com/supplements/vinpocetine/

(17) https://www.ncbi.nlm.nih.gov/pubmed/15760651

(18) https://www.ncbi.nlm.nih.gov/pubmed/12498034

(19) https://www.ncbi.nlm.nih.gov/pubmed/12460136

(20) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1429914/

(21) https://www.ncbi.nlm.nih.gov/pubmed/12044859

(22) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274818/

(23) https://www.ncbi.nlm.nih.gov/pubmed/23289173

(24) https://www.ncbi.nlm.nih.gov/pubmed/25548768

(25) https://www.ncbi.nlm.nih.gov/pubmed/19135345

(26) https://www.ncbi.nlm.nih.gov/pubmed/20357044

(27) https://www.ncbi.nlm.nih.gov/pubmed/27105868

(28) https://www.ncbi.nlm.nih.gov/pubmed/28054939

(29) https://www.ncbi.nlm.nih.gov/pubmed/27420093

(30) https://www.ncbi.nlm.nih.gov/pubmed/27005658

(31) https://www.ncbi.nlm.nih.gov/pubmed/20164557

(32) http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00212/full

(33) http://www.medsci.org/press/cocoa.html

(34) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518374/

(35) https://www.ncbi.nlm.nih.gov/pubmed/16794461

(36) https://www.eurekalert.org/pub_releases/2013-08/aaon-cmh073113.php

(37) https://www.ncbi.nlm.nih.gov/pubmed/28527220

(38) http://www.sciencedirect.com/science/article/pii/S0301051111002584

(39) https://www.ncbi.nlm.nih.gov/pubmed/26569545

(40) https://www.ncbi.nlm.nih.gov/pubmed/19358505

(41) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056736

(42) https://goo.gl/XZqLQd

(43) https://www.ncbi.nlm.nih.gov/pubmed/24006668

(44) https://www.ncbi.nlm.nih.gov/pubmed/9134116

(45) http://www.medsci.org/v11p0209.htm

(46) https://www.ncbi.nlm.nih.gov/pubmed/2068049

(47) https://www.ncbi.nlm.nih.gov/pubmed/2387659

(48) http://www.sciencedirect.com/science/article/pii/S1673537407600383

(49) https://www.ncbi.nlm.nih.gov/pubmed/19995444

(50) https://www.ncbi.nlm.nih.gov/pubmed/25277249

(51) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575935/

(52) http://www.webmd.com/brain/news/20101103/beet-juice-good-for-brain#1

(53) https://goo.gl/oeTwfb

(54) http://www.webmd.com/brain/news/20101103/beet-juice-good-for-brain#1

(55) https://www.ncbi.nlm.nih.gov/pubmed/26037632

(56) https://www.ncbi.nlm.nih.gov/pubmed/27630836

(57) https://www.ncbi.nlm.nih.gov/pubmed/16912655

(58) https://www.ncbi.nlm.nih.gov/pubmed/17459424

(59) https://www.ncbi.nlm.nih.gov/pubmed/12614590

(60) http://www.sciencedirect.com/science/article/pii/S0026286207000258

(61) http://onlinelibrary.wiley.com/doi/10.1002/ana.410150507/abstract

(62) https://www.sciencedaily.com/releases/2014/04/140429085116.htm

(63) https://goo.gl/x39wBK

(64) http://journals.sagepub.com/doi/abs/10.1038/jcbfm.2011.85

(65) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746283/

(66) https://www.ncbi.nlm.nih.gov/pubmed/22447676

(67) http://www.sciencedirect.com/science/article/pii/S0024320509004627

(68) https://www.ncbi.nlm.nih.gov/pubmed/19925811

(69) https://www.ncbi.nlm.nih.gov/pubmed/12466053

(70) https://goo.gl/JLo2KP

(71) https://www.ncbi.nlm.nih.gov/pubmed/23685189

(72) https://www.ncbi.nlm.nih.gov/pubmed/28325558

(73) https://goo.gl/ffuYWA

(74) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748160/

(75) https://www.ncbi.nlm.nih.gov/pubmed/15132312/

(76) https://www.ncbi.nlm.nih.gov/pubmed/2122148/

(77) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677118/

(78) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480845/

(79) https://www.ncbi.nlm.nih.gov/pubmed/25761837

(80) https://www.ncbi.nlm.nih.gov/pubmed/7301036

(81) https://link.springer.com/article/10.2165/11319230-000000000-00000

(82) https://www.ncbi.nlm.nih.gov/pubmed/21689376

(83) https://www.ncbi.nlm.nih.gov/pubmed/6403074

(84) https://examine.com/supplements/piracetam/

(85) https://www.ncbi.nlm.nih.gov/pubmed/3556550

(86) https://www.ncbi.nlm.nih.gov/pubmed/21183904

(87) https://goo.gl/Uf4XQU

(88) https://www.ncbi.nlm.nih.gov/pubmed/4026900

(89) https://www.ncbi.nlm.nih.gov/pubmed/8876930

(90) https://www.ncbi.nlm.nih.gov/pubmed/10978039

(91) https://www.ncbi.nlm.nih.gov/pubmed/17523446

(92) https://goo.gl/JYEMNd

(93) https://www.nature.com/articles/ncomms14191

(94) https://www.ncbi.nlm.nih.gov/pubmed/22773150

(95) https://www.ncbi.nlm.nih.gov/pubmed/3810733

(96) https://www.ncbi.nlm.nih.gov/pubmed/3446252

(97) https://www.ncbi.nlm.nih.gov/pubmed/20096732

(98) https://goo.gl/rHW2KD

(99) https://www.ncbi.nlm.nih.gov/pubmed/27156064

(100) https://www.ncbi.nlm.nih.gov/pubmed/8967461

(101) https://ccforum.biomedcentral.com/articles/10.1186/cc10020

(102) https://goo.gl/KRZ9oy

(103) https://www.ncbi.nlm.nih.gov/pubmed/16001018

(104) http://journals.sagepub.com/doi/full/10.1038/sj.jcbfm.9600177

(105) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695184/

(106) http://www.ncbi.nlm.nih.gov/pubmed/11796739

(107) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1430829/

(108) https://www.ncbi.nlm.nih.gov/pubmed/1839138

(109) https://www.ncbi.nlm.nih.gov/pubmed/1098982

(110) http://www.ncbi.nlm.nih.gov/pubmed/19351232

(111) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011061/

(112) https://www.ncbi.nlm.nih.gov/pubmed/16055952

(113) https://www.ncbi.nlm.nih.gov/pubmed/10669911

(114) https://www.ncbi.nlm.nih.gov/pubmed/1098982

(115) https://www.ncbi.nlm.nih.gov/pubmed/7820960

(116) https://www.ncbi.nlm.nih.gov/pubmed/7913981/

(117) https://link.springer.com/chapter/10.1007/978-3-319-38810-6_29

(118) https://www.ncbi.nlm.nih.gov/pubmed/27526146

(119) https://www.ncbi.nlm.nih.gov/pubmed/26782228

(120) https://www.ncbi.nlm.nih.gov/pubmed/23907764

(121) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391232/

(122) http://onlinelibrary.wiley.com/doi/10.1002/hbm.22304/abstract

(123) https://www.ncbi.nlm.nih.gov/pubmed/28249119

(124) http://www.exeter.ac.uk/news/featurednews/title_572581_en.html

(125) https://www.sciencedaily.com/releases/2017/03/170307100356.htm

(126) https://www.ncbi.nlm.nih.gov/pubmed/20453669

(127) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539653/

(128) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246784/

(129) https://www.ncbi.nlm.nih.gov/pubmed/15118175

(130) https://www.ncbi.nlm.nih.gov/pubmed/14757593

(131) https://www.ncbi.nlm.nih.gov/pubmed/28155036

(132) https://www.ncbi.nlm.nih.gov/pubmed/28506213

(133) https://www.ncbi.nlm.nih.gov/pubmed/15929050

(134) https://www.ncbi.nlm.nih.gov/pubmed/17088679

(135) https://www.ncbi.nlm.nih.gov/pubmed/10867218

(136) https://www.ncbi.nlm.nih.gov/pubmed/9682941

(137) http://jamanetwork.com/journals/jamapsychiatry/fullarticle/481961

(138) https://www.ncbi.nlm.nih.gov/pubmed/12742675

(139) https://www.ncbi.nlm.nih.gov/pubmed/9373423

(140) https://www.ncbi.nlm.nih.gov/pubmed/21167506

(141) https://www.ncbi.nlm.nih.gov/pubmed/7496746

(142) https://www.ncbi.nlm.nih.gov/pubmed/1919689

(143) http://neuro.psychiatryonline.org/doi/abs/10.1176/jnp.15.3.326

(144) http://jamanetwork.com/journals/jamaneurology/fullarticle/783869

(145) https://www.sciencedaily.com/releases/2017/04/170412181341.htm

(146) https://www.medicalnewstoday.com/articles/276595

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

How to Improve Your Brain Function with An Oxygen Concentrator

Insufficient oxygen means insufficient biological energy that can result in anything from mild fatigue to life threatening disease. The link between insufficient oxygen and disease has now been firmly established.
— Dr. W. Spencer Way, Journal of the American Association of Physicians

Oxygen is absolutely essential for life, and your brain depends it more than any other part of your body.

Your brain weighs about 2% of your body weight.

But it consumes about 20% of the oxygen you breathe.

Your brain cells need to get enough oxygen to produce energy and function optimally.

If they don’t, they can start to deteriorate, leading to poor memory and concentration, low mood, lack of energy and drive. 

I personally use oxygen therapy with an oxygen concentrator to support and optimize my brain function. 

This post discusses oxygen therapy, the benefits, how I use it, and how it could help you. 

It’s a great way to boost cognitive function, memory and energy.

Read on to learn more. 

 

Types of Oxygen Therapy

Oxygen therapy is the use of supplemental oxygen to treat a variety of medical conditions.

Air is typically 21% oxygen by volume, but oxygen therapy increases the amount.

Hyperbaric oxygen therapy (HBOT) is the most well-known type of oxygen therapy, and it allows patients to inhale 100% pure oxygen in a total body chamber.

Tube plugged into oxygen tank

HBOT is often used by professional athletes for recovery and performance.

But it’s expensive and not available to most people. 

Luckily, it’s not the only option available to you. 

Normobaric oxygen therapy (NBOT) is much less expensive, and it’s easily accessible and non-invasive. I personally use NBOT at home. 

Similar to HBOT, NBOT brings a higher percentage of oxygen into the body and can bring major benefits to your brain and cognition.

Researchers have found that both normobaric and hyperbaric oxygen therapy increase the amount of oxygen that is delivered to the blood and brain (1-2). 

With normobaric therapy, oxygen can be delivered via an oxygen concentrator

An oxygen concentrator is a machine that separates oxygen from room air, and then delivers the concentrated oxygen through a nasal cannula or mask.

I use this oxygen concentrator.

Make sure you read the “My Experience” section below where I discuss how to use it. .

 

Why You Might Need Oxygen Therapy and How It Works

Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply.

If this happens to you, you can end up with mitochondria dysfunction and poor brain function. 

But how do you know?

You can use an oxygen saturation monitor to measure and monitor your blood oxygenation levels. I use this monitor. It’s the best and most accurate oxygen saturation monitor that is often used by medical professionals, and freely available to the public.

Your blood oxygen saturation levels (SpO2) should measure 99-100% if you want to feel optimal.  

An illustration of the benefits of oxygen therapy.

There are a number of reasons why your body and brain might not be getting enough oxygen:

  • Sedentary lifestyle and lack of exercise

  • Shallow breathing – Most people today don’t breathe well and are shallow breathers.

  • Chronic stressStress and anxiety can also affect your breathing. If you're stressed and anxious, you end up taking more shallow breaths. Your sympathetic “fight or flight” nervous system is chronically active, and this reduces the amount of oxygen that reaches your brain.

  • Abnormal blood pressure – Both high and low blood pressure can be problematic and may suggest that blood is not optimally flowing to your brain. If blood flow to your brain is poor, oxygen levels in your brain will also be suboptimal.

Normobaric oxygen therapy can help you if you’re struggling with any of these problems.

It can also help if you’re recovering from a concussion or brain injury or some sort of toxic exposure (e.g. mold). 

Neuroplasticity and neurogenesis require oxygen, and increasing the delivery of oxygen to the body and brain supports the healing process of damaged tissue.

Normobaric oxygen therapy has been shown to work by increasing brain blood flow, reducing permeability of the blood-brain barrier, and it may even have cholinergic properties (3-8). 

Researchers have concluded that the “neuroprotective role of normobaric oxygen therapy is extremely promising” (9). 

They have also found that it can lead to a number of positive cognitive outcomes, which I'll explore below. 

Click here to subscribe

1. Normobaric Oxygen Therapy Improves Memory and Recall

In their book Advances in Natural Medicines, Nutraceuticals, and Neurocognition, Dr. Andrew Scholey and Dr. Con Stough state that normobaric oxygen therapy is an effective memory enhancer

Research has shown that oxygen administration leads to improved long-term memory compared to a control group of normal air-breathing.

Several clinical studies also show that concentrated oxygen significantly enhances memory formation and recall in adults (10-11, 16-17). 

In one study, inhalation of oxygen immediately prior to learning a word list resulted in a significant increase in the average number of words recalled 10 minutes later (14). 

In other studies, subjects who received oxygen remembered shopping lists and faces better than subjects that didn’t receive oxygen (12-13, 18). 

Researchers have also found significant positive correlations between changes in oxygen saturation and memory performance (15). 

 

2. Normobaric Oxygen Therapy Improves Cognitive Performance

Research shows that concentrated oxygen significantly enhances cognitive performance (19-20, 29). 

And it doesn’t just improve cognitive function in the elderly; it also enhances cognitive processing in young adults (21-23). 

In one study, students that inhaled oxygen while playing a computer game performed much better compared to students who didn’t inhale any additional oxygen (26). 

In two other studies, researchers found that the inhalation of 30% oxygen improved cognitive functioning and performance by activating several brain areas (24-25). 

Oxygen administration appears to facilitate cognition most effectively for tasks with a higher cognitive load.
— Advances in Natural Medicines, Nutraceuticals, and Neurocognition

They concluded that breathing a higher concentration of oxygen increases blood oxygen levels in the brain, which then supports cognition (24-25). 

And other researchers have found significant correlations between blood oxygen levels and cognitive performance (27-28). 

 

3. Normobaric Oxygen Therapy Enhances Accuracy

Several studies have found that normobaric oxygen therapy can also increase your accuracy when doing tasks. 

Two studies found that 30% and 40% oxygen administration significantly enhanced accuracy rates compared to 21% oxygen (normal air). It did this by increasing oxygen levels in the blood, which then stimulated activity in the brain (31-32). 

As the difficulty of the task increased, the difference in the accuracy rate between 40% and 21% oxygen administration also increased (33-34). 

And researchers found a positive correlation between task performance and oxygen levels in the brain (33-34). 

Other research has found that 30% oxygen administration enhances accuracy rates during verbal tasks by activating specific areas of the brain (35-36). 

Click here to subscribe

4. Normobaric Oxygen Therapy Reduces Reaction Time

People who receive normobaric oxygen therapy also have faster reaction times (37-38). 

In one study, participants performed visual matching tasks under 43% oxygen or 21% oxygen (normal air).

Researchers reported a significant decrease in reaction time in the presence of 43% oxygen (39).

The researchers hypothesized that normobaric oxygen therapy increases oxygen levels in the blood, which then leads to more available oxygen in the brain (39). 

Another follow-up study confirmed that response time decreases during normobaric oxygen therapy due to the increase in blood oxygen levels (40). 

Normobaric oxygen therapy has even been shown to reduce reaction time in children with attention deficit hyperactivity disorder (ADHD) (41). 

 

5. Normobaric Oxygen Therapy Increases Energy

Despite comprising only 2 percent of the body’s weight, the brain gobbles up more than 20 percent of daily energy intake.

All cells within your body need oxygen, particularly your brain cells.

They require a lot of oxygen to produce energy. 

In fact, your energy levels depend on how much oxygen you have and how well your mitochondria utilize it.

If your brain doesn’t get enough oxygen, it simply won’t function properly, and you’ll end up feeling tired. 

But normobaric oxygen therapy can increase energy.

Research shows that it "decreases fatigue and reduces feelings of sleepiness" (51). 

 

6. Normobaric Oxygen Therapy Improves Neurological Function After Stroke

Researchers say that normobaric oxygen therapy is a promising therapy for stroke patients. 

It’s been shown to reduce brain swelling and blood-brain barrier permeability and increase brain blood flow after stroke (42-43). 

One study found that normobaric oxygen therapy significantly improved neurological functions in patients with acute ischemic stroke (44). 

Other researchers have found that normobaric oxygen therapy increases oxygen supply to damaged tissues and improves outcomes after stroke, in both animals and humans (45-46). 

As a non-pharmaceutical and non-invasive treatment, normobaric oxygen therapy is “worthy of notice” (47). 

Click here to subscribe

7. Oxygen Therapy May Help Reverse Brain Damage After Traumatic Brain Injury

Researchers found that a combination of normobaric and hyperbaric oxygen therapy reversed brain damage in 2-year-old girl who nearly drowned in a swimming pool.

She received normobaric oxygen treatment (twice daily for 45 minutes by nasal cannula), and doctors witnessed significant improvements in her neurological function (48-49). 

Normobaric oxygen therapy alone improved the girl’s neurological function before she started hyperbaric oxygen therapy (48-49). 

She eventually made a full recovery with both types of oxygen therapy. 

Researchers have also said that the “neuroprotective role of normobaric oxygen therapy is extremely promising” for traumatic brain injury (50). 

I’ve also seen multiple studies with rats and mice showing that normobaric oxygen therapy reduces brain swelling and brain damage.

 

8. Other Possible Benefits (with Less Research Behind Them)

  • Increases attention and vigilance – Oxygen administration significantly improved performance on several measures of attention and vigilance (52).

  • Reduces inflammation – Oxygen levels play a critical role in determining the severity of the inflammatory response and ultimately the effectiveness of anti-inflammatory drugs (53-54).

  • Improves hand-eye coordination (55).

  • Increases positive sense of wellbeing (56).

 

My Experience with Normobaric Oxygen Therapy

If you use oxygen for 20 minutes, muscles become loosened, headaches and stress seem to disappear, there is a renewed energy and a feeling of relaxation.
— Dr. Richard de Andrea

 

I was first introduced to oxygen therapy through an integrative doctor I know.

At the end of each appointment with him, I would use his oxygen concentrator for about 15-20 minutes. He used this oxygen concentrator. 

I eventually decided to buy my own oxygen concentrator and now regularly use it at home. 

There is a dial for adjusting the flow of oxygen and the port is located on the upper right of the machine.

There is a dial for adjusting the flow of oxygen and the port is located on the upper right of the machine.

I bought this oxygen concentrator. I'll discuss how it has helped me below.

The oxygen from the concentrator is supplied through an nasal canula. It’s completely non-invasive and painless, and it’s become one of my favourite tools for supporting my brain.

I use it for about 20 to 30 minutes, a few times each week. I often do this while exercising on this indoor stationary bike. Sometimes I use it without exercising on the bike. 

I also use it for about 3 to 5 minutes as needed, usually when doing work. 

During a session, I use this oxygen saturation monitor to measure my blood oxygenation levels. 

Your blood oxygen saturation levels (SpO2) should measure 99-100%. I see mine increase and max out while using the concentrator

My oxygen concentrator delivers up to 5 litres of oxygen per minute. I usually set mine somewhere between 3 and 5 litres per minute. 

But I would recommend starting lower and working your way up. 

Similar to low-level laser/light therapy, oxygen therapy is somewhat experimental. You need to find the right “dosage” for yourself.

 

Benefits and What I’ve Noticed

Jordan Fallis using oxygen concentrator.

I've had good results with concentrated oxygen therapy and it has surprisingly increased the quality of my life. 

One of the main things I notice is that it feels like it puts energy back into my body every time I use it.

One of my clients uses it whenever she gets brain fog, and it clears it up. Another client uses it when she gets a headache and the headache disappears within 10 minutes.

It also does an incredible job of getting rid of hangovers. They essentially go away if you use the concentrator the morning after drinking. You just immediately feel like a completely new person.

Here are some other benefits I’ve experienced:

  • Increased energy and alertness

  • Improved mood

  • Increased cognitive function

  • Improved memory and enhanced ability to work through difficult tasks

  • More mental motivation, endurance and productivity if used during tasks

Keep in mind that this is my personal experience (and the experiences of a couple of clients). There really is no guarantee that you’ll experience the same results, but it’s worth a try if you’re sick and other therapies aren’t improving your brain function. 

Click here to subscribe

Combining Oxygen Therapy with Other Therapies

I also combine oxygen therapy with other therapies and supplements for their synergistic effects. 

Researchers have found that combining normobaric oxygen therapy with the following therapies leads to better results (57-59):

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) https://www.ncbi.nlm.nih.gov/pubmed/23317164

(2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234199/

(3) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023418/

(4) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110143/

(5) https://www.ncbi.nlm.nih.gov/pubmed/28931617

(6) https://www.ncbi.nlm.nih.gov/pubmed/25804925

(7) https://www.ncbi.nlm.nih.gov/pubmed/27177548

(8) https://www.ncbi.nlm.nih.gov/pubmed/9600580/

(9) https://www.ncbi.nlm.nih.gov/pubmed/19922270

(10) https://www.ncbi.nlm.nih.gov/pubmed/9600580/

(11) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107523/

(12) https://www.ncbi.nlm.nih.gov/pubmed/10604851/

(13) https://www.ncbi.nlm.nih.gov/pubmed/9600580

(14) https://www.ncbi.nlm.nih.gov/pubmed/8740047

(15) https://www.ncbi.nlm.nih.gov/pubmed/18322865/

(16) https://www.ncbi.nlm.nih.gov/pubmed/9600580/

(17) https://www.ncbi.nlm.nih.gov/pubmed/9694523/

(18) https://www.ncbi.nlm.nih.gov/pubmed/9862412

(19) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107523/

(20) https://www.ncbi.nlm.nih.gov/pubmed/10604851/

(21) https://www.ncbi.nlm.nih.gov/pubmed/9694523/

(22) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107523/

(23) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107523/

(24) https://www.ncbi.nlm.nih.gov/pubmed/15522765

(25) https://www.ncbi.nlm.nih.gov/pubmed/15684544

(26) https://goo.gl/h9o5Aj

(27) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107523/

(28) https://www.ncbi.nlm.nih.gov/pubmed/10604851/

(29) https://www.ncbi.nlm.nih.gov/pubmed/17662686/

(30) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107523/

(31) https://www.ncbi.nlm.nih.gov/pubmed/17053947/

(32) https://www.ncbi.nlm.nih.gov/pubmed/17395994/

(33) https://www.ncbi.nlm.nih.gov/pubmed/18569150/

(34) https://www.ncbi.nlm.nih.gov/pubmed/20080151

(35) https://www.ncbi.nlm.nih.gov/pubmed/16678926

(36) https://www.ncbi.nlm.nih.gov/pubmed/15929498

(37) https://www.ncbi.nlm.nih.gov/pubmed/15627418/

(38) https://www.ncbi.nlm.nih.gov/pubmed/10604851/

(39) https://www.ncbi.nlm.nih.gov/pubmed/19429029/

(40) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107523/

(41) https://www.ncbi.nlm.nih.gov/pubmed/22285726

(42) https://www.ncbi.nlm.nih.gov/pubmed/26416428

(43) https://www.ncbi.nlm.nih.gov/pubmed/25804925

(44) https://www.ncbi.nlm.nih.gov/pubmed/28931617

(45) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110139/

(46) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146175/

(47) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110139/

(48) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510296/

(49) https://goo.gl/m2CbrR

(50) https://www.ncbi.nlm.nih.gov/pubmed/19922270

(51) https://www.ncbi.nlm.nih.gov/pubmed/15627418/

(52) https://www.ncbi.nlm.nih.gov/pubmed/9694523/

(53) http://www.sciencedaily.com/releases/2013/12/131202121536.htm

(54) https://jlb.onlinelibrary.wiley.com/doi/abs/10.1189/jlb.0912462

(55) https://www.ncbi.nlm.nih.gov/pubmed/11258587

(56) https://www.ncbi.nlm.nih.gov/pubmed/11258587

(57) https://www.ncbi.nlm.nih.gov/pubmed/27458543

(58) https://www.ncbi.nlm.nih.gov/pubmed/27177548

(59) https://www.ncbi.nlm.nih.gov/pubmed/26416428

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

26 Powerful Ways to Boost Your Endocannabinoid System

The endogenous cannabinoid system, named after the plant that led to its discovery, is perhaps the most important physiologic system involved in establishing and maintaining human health.
— Dr. Dustin Sulak

It’s becoming increasingly clear that stimulating and supporting your endocannabinoid system is another way to improve your brain and mental health. 

But you don’t need to smoke marijuana to do this. 

There are a number of other options, and this article explore them.

Marijuana leaf and the endocannabinoid system.

But first, what exactly is your endocannabinoid system? 

Well, your body actually creates its own cannabinoids, similar to those found in cannabis. 

And these naturally-occurring cannabinoids bind to cannabinoid receptors within your body and brain.

You can think of these receptors like little “locks”, and your body’s cannabinoids fit naturally into these locks like “keys”. Together, they make up your endocannabinoid system, which can influence your appetite, pain, inflammation, sleep, stress responses, mood, memory, motivation, reward, etc. (91-92). 

There are two main cannabinoid receptors – cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2). 

An illustration of CB1 and CB2 receptors in the body and brain.

CB1 receptors are mostly found in the brain and impact a number of neurotransmitters, including GABA, glutamate, dopamine and serotonin. CB2 receptors, on the other hand, are mostly found within the immune system and blood cells (93-99).

However, it’s important to note that some CB1 receptors are still located outside the brain, and some CB2 receptors can be found within the brain. So, there is some overlap. 

According to Martin Lee, author of Smoke Signals: A Social History of Marijuana, cannabinoid receptors are more abundant in the brain than any other type of neurotransmitter receptor.

There are two different types of cannabinoids that can activate these receptors in your body:

  • Phytocannabinoids – plant-derived cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD) found in marijuana

  • Endocannabinoids – as mentioned before, these cannabinoids are produced naturally within the body. Anandamide is the main endocannabinoid in your body. It can be found in humans, but also many other animals and plants. It binds to both CB1 and CB2 receptors and has similar effects as THC. 2-Arachidonoylglycerol (2-AG) is another critical endocannabinoid in your body that also binds to the CB1 and CB2 receptors. Its effects are similar to CBD (100-107).

 

What Are the Benefits of Stimulating and Supporting Your Endocannabinoid System?

Modulating the activity of the endocannabinoid system has turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few.
— Dr. Pal Pacher, M.D., Ph.D

There is an increasing amount of research linking a number of illnesses and symptoms to low endocannabinoids levels, including:

Some researchers are convinced that when your body doesn’t produce enough endocannabinoids (anandamide and 2-AG), you’re more likely to develop these diseases.

They’ve even coined the term “Clinical Endocannabinoid Deficiency” to describe the problem (108). 

CDB receptor synapses.

But if you have one of the above conditions, don’t worry!

You can stimulate and support your endocannabinoid system naturally, which can lead to a number of brain and mental health benefits:

So without further ado, here are 26 ways to stimulate and support your endocannabinoid system naturally.

 

1. Cold Exposure

Cold exposure has been shown to increase endocannabinoid levels (1). 

Researchers have also found that cold exposure significantly increases the density of CB1 neurons (2). 

A man sitting outside in the freezing cold. Cold exposure stimulates the endocannabinoid system.

To support my endocannabinoid system, I take a cold shower every day, and often go outside with minimal clothing in the winter.

Try finishing your next shower with at least 30 seconds of cold water and see how you feel.

Then work your way up to longer periods of time.

It's painful to do, but the lingering effects are worth it.

You can also ease yourself into it by simply sticking your face in ice cold water.

Cold exposure also stimulates the vagus nerve.

 

2. Sex Hormones

Male and female sex hormones also stimulate and support the endocannabinoid system.

Both testosterone and estradiol have been shown to upregulate CB1 receptors (3-4). 

Estradiol also increases the synthesis and release of the endocannabinoids (anandamide), which activates CB1 receptors (5-6). 

And the plasma levels of anandamide correlate nicely with the levels of estrogen during the menstrual cycle in women (7). 

I recommend both men and women get their hormones checked regularly.

You can get your testosterone levels checked here and your estradiol levels checked here.

I had low testosterone and testosterone replacement therapy (TRT) really improved my brain and mental health.

 

3. Coffee

Drinking coffee is another way to stimulate and support your endocannabinoid system. 

Researchers believe that the cannabinoid system is involved in the psychoactive properties of caffeine (10). 

A cup of coffee on a plate with a spoon. Coffee supports and boost the endocannabinoid system.

Regular caffeine consumption has been shown to enhance the activation of CB1 receptors by endocannabinoids (8). 

CB1 receptors are downregulated after “social defeat stress”, but caffeine counteracts this effect (9). 

I drink one cup of coffee most mornings.

Coffee and caffeine can disrupt sleep though, so make sure you don’t drink it later in the day. I have my last cup sometime between 10 in the morning and noon. If I have it any later than that, it disrupts my sleep.

It's also a good idea to try to consume the whole coffee fruit, instead of just the coffee bean or pure caffeine. 

Traditionally, the coffee bean is extracted from the coffee fruit for roasting. And the surrounding fruit is discarded. 

But that’s a huge problem.

Because the coffee fruit contains several healthy compounds not found in coffee beans themselves.

And after years of careful clinical research, scientists have discovered that ingesting whole coffee fruit concentrate significantly increases brain function. 

Coffee fruit concentrate is included in the Optimal Brain supplement

 

4. Extra Virgin Olive Oil

Olive oil has numerous health benefits, particularly because of its strong anti-inflammatory effects.

It’s also been shown to upregulate CB1 receptors (11).

I add olive oil to my salads and sometimes even just take a tablespoon of it straight.

Be careful though. A lot of the cheap extra virgin olive oils in grocery stores are not actually “extra virgin.”

Investigations have found that there is a lot of fraud within the olive oil industry and many so-called extra virgin olive oils contains other cheaper, refined vegetable oils, such as soybean, corn and canola. 

This is discussed more in the book Extra Virginity: The Sublime and Scandalous World of Olive Oil.

Click here to subscribe

5. Cannabidiol (CBD) Oil

Cannabidiol (CBD) is one of the active cannabinoids in cannabis.

It is not psychoactive but it has a wide range of medical applications.

Research shows that CBD enhances the expression of CB1 receptors in the brain (12-13). 

CBD oil boosts the endocannabinoid system.

It also increases levels of 2-AG by preventing it from breaking down (14-15). 

I’ve taken this CBD oil and I highly recommend it.

It reduces my stress, makes me really sleepy and knocks me out before bed.

 

6. Flavonoids

Flavonoids are a diverse group of plant compounds found in almost all fruits and vegetables.

Chocolate, tea, wine, and some beans, herbs, spices, nuts and seeds contain them. Overall, the more colorful a food is, the richer it is in flavonoids.

Fruits and vegetables that are rich in flavinoids, which are known to stimulate the endocannabinoid system.

The following flavonoids inhibit fatty acid amide hydrolase (FAAH), which is the enzyme responsible for breaking down endocannabinoids (anandamide) (16):

  • Genistein

  • Kaempferol

  • 7-hydroxyflavone

  • 3,7-dihydroxyflavone

I try to eat as many fruits and vegetables as possible on a daily basis so that I’m consuming plenty of flavonoids.

It’s best to consume fruits and vegetables in their raw forms to receive the highest number of flavonoids (cooked fruits and vegetables have less).

Check out my Free Grocery Shopping Guide for Optimal Brain Health for a bunch of flavonoid-rich foods. 

 

7. Tea

Tea contains catechins, which are antioxidant compounds that have anti-inflammatory and neuroprotective effects.

Researchers have found that catechins in tea target and bind to cannabinoid receptors in the central nervous system (25-26).

Epigallocatechin gallate (EGCG) is the most well known catechin. It’s found in green tea. I take a concentrated green tea extract with EGCG to support my endocannabinoid system. 

Drinking tea can also lower cortisol, and green tea increases BDNF

 

8. Kava

Kava is a plant located in the western Pacific. The root of the plant is used medicinally to treat anxiety and sleep disorders because it causes relaxation without impacting cognitive performance. Some people say it feels like drinking alcohol (30-31). 

Researchers have evaluated commercially available kava supplements to see whether they bind to cannabinoid receptors. They found that yangonin, a compound in kava, binds to the CB1 receptor, and concluded that kava’s anti-anxiety effects may be because it stimulates the endocannabinoid system (32). 

I searched for kava supplements that include yangonin and found this one.

I personally don’t take kava anymore because I get a weird reaction from it and I found out I’m allergic to the plant. 

Click here to subscribe

9. Osteopathy

Osteopathy is a healing modality that emphasizes the treatment of disease by manipulating and massaging the bones, joints, and muscles. 

One study found that endocannabinoid levels increased by 168% on average after osteopathic treatment. (33). 

Practitioners of osteopathy are referred to as osteopaths. I saw an osteopath in Ottawa soon after my concussions in 2010. I had been suffering from constant dizziness, and his therapy completely reversed the dizziness. And it was permanent. The dizziness never came back. I was amazed and very grateful. 

I recommend finding an osteopath in your area if you’ve ever suffered a traumatic brain injury.

If you happen to be in the Ottawa area, go to the one that I did

 

10. Probiotics

Research suggests that some probiotics can stimulate and support the endocannabinoid system. 

In one study, researchers found that lactobacillus acidophilus, a specific probiotic species, increases the expression of CB2 receptors (53). 

Lactobacillus acidophilus is included in the Optimal Biotics supplement.

Probiotics have also been shown to stimulate the vagus nerve and help with depression

And here are five other ways to increase the good bacteria in your gut. 

 

11. Dark Chocolate

Most people know dark chocolate is rich in multiple antioxidants, such as flavonols and polyphenols, which reduce oxidative stress.

But interestingly, it also contains the endocannabinoid anandamide (54). 

Dark chocolate also other compounds that slow down the breakdown of anandamide, increasing the amount of anandamide that stimulates your endocannabinoid system (55-56). 

This is likely one reason why eating chocolate makes people feel so good.

Dark chocolate also increases BDNF and reduces cortisol.  

 

12. Reduce Stress

I highly recommend you try to do something every day to manage your stress because emotional stress has been shown to downregulate CB1 receptors (57-58). 

High cortisol levels for prolonged periods of time, such as those caused by chronically stressful circumstances, also reduces CB1 receptors and significantly reduces cannabinoid binding to CB1 receptors (59-62). 

On top of this, chronic psychological stress reduces endocannabinoid levels in the brain (63-66). 

A hand squeezing a stress ball. Reducing stress can support your endocannabinoid system.

Overall, researchers say there is strong evidence that the endocannabinoid system needs to function optimally in order to properly deal with stress (67). 

My favourite ways to reduce stress include neurofeedback, meditation (using the Muse headband), massage, acupuncture, eye movement desensitization and reprocessing (EMDR), emotional freedom techniques (EFT), heart-rate variability (HRV) training, and using an acupressure mat. 

Some supplements that can help you reduce stress include zinc, magnesium, ashwagandha and phosphatidylserine.

This anti-anxiety supplement also includes a number of natural compounds that have personally helped me manage my stress over the years.

And here is an article with 20 other ways to lower your stress hormone, cortisol. 

 

13. Magnolia Officinalis

Magnolia Officinalis is a plant that has neuroprotective properties and relaxing effects.

It’s used in Chinese traditional medicine for the treatment of anxiety, depression and sleeping disorders. 

Researchers have found that Magnolia officinalis extract and its main bioactive constituents, magnolol and honokiol, can activate cannabinoid receptors (17). 

You can either supplement with an extract, or you can drink Magnolia tea. 

Both the tea and extract should be taken with a meal consuming fat because the active ingredients are fat soluble. 

Click here to subscribe

14. Exercise

Exercise is another great way to stimulate and support your endocannabinoid system.

Medium and high-intensity exercise has been shown to activate the endocannabinoid system (73). 

Research also shows that exercise significantly upregulates CB1 receptors and enhances CB1 receptor sensitivity, which is why exercise can protect against the consequences of stress (68, 72, 74). 

Exercise-related improvements in memory are also due to activation of the CB1 receptor. Blocking this receptor seems to prevent the memory benefits of exercise (69, 72). 

Several studies also show that exercise increases levels of anandamide and activates cannabinoid signaling (70-71). 

Illustration of people running. Exercise stimulates the endocannabinoid system.

And researchers now believe that endocannabinoids may actually be responsible for the “runner’s high” (euphoria) that you get when you exercise, and not endorphins (76-77). 

However, you shouldn’t force yourself to exercise. Forced exercise is seen by the endocannabinoid system as a type of stress, and therefore doesn’t increase endocannabinoid levels and can actually decrease CB1 signaling (75). 

So, you should find an aerobic activity that you enjoy so that it’s not a burden.

This is exercise routine I try to follow consistently:

  • Lift heavy weights 1-4 times per week

  • High-intensity interval sprinting 1-2 times per week

  • Walk as much as I can (ideally 30-60 minutes every day)

  • Run for 20-30 minutes before lifting weights

Many brain health experts recommend exercise as their number one piece of advice for optimal brain health. 

 

15. Palmitoylethanolamide

Palmitoylethanolamide (PEA) is a natural compound that has anti-inflammatory and neuroprotective effects, and low levels of PEA can contribute to chronic brain inflammation and pain (20). 

Research shows that PEA can alleviate pain and increase mood by enhancing endocannabinoid activity (18-19, 21-24).

PEA is naturally found within the body, but it’s also available as a supplement. It's even used for medical purposes in Italy and Spain. 

 

16. Omega-3 Fatty Acids

Omega-3 fatty acids are essential fats that your body cannot produce itself. They are necessary for the normal electrical functioning of your brain and nervous system.

Research shows that they increase the synthesis of endocannabinoids and upregulate both CB1 and CB2 receptors (78-79). 

There is also a connection between low omega-3 fatty acid intake, poor endocannabinoid function and mood changes (80). 

Omega-3 fatty acids are found primarily in cold water fish such as salmon, black cod, sablefish, sardines and herring.

Unfortunately, most people don't consume enough omega-3 fatty acids through their diet.

That’s why I recommend people supplement with krill oil, a special kind of fish oil that contains the essential omega-3 fatty acids. 

And you can read more about the importance of omega-3 fatty acids here

Click here to subscribe

17. Agmatine

Agmatine is a metabolite of the amino acid arginine.

It can help reduce pain, treat drug addiction, and protect the brain from toxins (27-28). 

It has been shown to enhance the painkilling effects of cannabinoids. It does this by increasing cannabinoid action and signalling through the CB1 receptor (29). 

My personal experience with agmatine is that it made me agitated, so I stopped taking it. But I don’t have any symptoms of pain. If you do, I think it’s worth trying.

 

18. Caryophyllene

Caryophyllene is a compound found in many plants and essential oils, including clove, rosemary, basil, oregano, lavender, and hops. It also contributes to the spiciness of black pepper (34). 

Caryophyllene has been shown to have anti-inflammatory, neuroprotective, antidepressant, anti-anxiety and anti-alcoholism effects (35, 40-41). 

These effects are likely because it binds to the cannabinoid receptors (36-37, 39, 42-43). 

It can also help reduce neuropathic pain through the CB2 receptor (38). 

 

19. Echinacea

Echinacea is a Native American medicinal plant and one of the most popular medicinal herbs.

People often use it to reduce flu symptoms and shorten the duration of the common cold. It’s also sometimes used to reduce anxiety and relieve fatigue.

Compounds in Echinacea, called alkylamides, have been shown to reduce inflammation by binding to the CB2 receptor (44, 46-47). 

Researchers have also found that alkylamides increase the effect of endocannabinoids (45). 

 

20. Black Truffle

Tuber melanosporum, also called the black truffle, is an edible mushroom native to Southern Europe.

Researchers have found that black truffles contain the endocannabinoid anandamide (49). 

Black truffle peelings can be added meals and go particularly well with mashed potatoes. 

 

21. Diindolylmethane (DIM)

Diindolylmethane (DIM) is an anti-carcinogenic compound found in cruciferous vegetables such as broccoli, cauliflower, Brussels sprouts, cabbage and kale.

DIM is one of the reasons why these foods are considered so healthy. 

Studies show that DIM reduces inflammation because it binds to CB2 receptors (50-51). 

You can also take it as a supplement.

Click here to subscribe

 

22. Ruta Graveolens

Ruta graveolens, commonly known as rue, is a medicinal herb.

Researchers have found that a compound within it binds to cannabinoid receptors (52). 

Rue can be taken as an extract.

 

23. Acmella Oleracea

Acmella Oleracea, also known as Electric Daisy, is a medicinal herb originating from the Amazon region. 

It contains phytocannabinoids and other compounds that can reduce pain and inflammation (81-82). 

It’s available as an extract.

 

24. Helichrysum Umbraculigerum

Helichrysum Umbraculigerum is a plant with anti-inflammatory and antioxidant properties, originating from South Africa.

It’s been used medicinally for thousands of years, especially in countries like Italy, Spain, and Portugal. 

Researchers have found that it has antidepressant effects likely because it contains cannabigerol, a phytocannabinoid that stimulates the endocannabinoid system (83-85). 

A number of different essential oils with Helichrysum Umbraculigerum are available.

 

25. Radula Marginata

Radula Marginata is a plant commonly found in New Zealand.

It contains cannabinoids and cannabinoid-like compounds that bind to CB1 receptors, activating the endocannabinoid system (86-90). 

 

26. Curcumin

Curcumin is the most heavily researched compound within turmeric, the spice that gives curry its yellow colour.  

It’s one of my favourite natural compounds for optimal health.  

Researchers have found that supplementing with curcumin for 4 weeks reduces depression by binding to the CB1 receptor and increasing endocannabinoid levels in the brain (155).

Curcumin is included in the Optimal Energy supplement.

Since curcumin is a fat soluble, take it with a fatty meal.  

 

Conclusion

As you can see, there are many different ways to stimulate your endocannabinoid system besides smoking cannabis. 

And supporting this important system can lead to a number of brain and mental health benefits. 

I hope you implement some of these strategies into your regular routine and notice you feel better and live more optimally over time. 

If you think you know someone who might benefit from this article, please share it with them.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) http://www.jlr.org/content/57/3/464.short

(2) https://www.researchgate.net/publication/272355424_INCREASE_IN_THE_NUMBER_OF_CB1_IMMUNOPOSITIVE_NEURONS_IN_THE_AMYGDALOID_BODY_AFTER_ACUTE_COLD_STRESS_EXPOSURE

(3) https://www.ncbi.nlm.nih.gov/pubmed/24055403

(4) https://www.ncbi.nlm.nih.gov/pubmed/21412772

(5) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697880/

(6) https://www.ncbi.nlm.nih.gov/pubmed/12393387/

(7) https://www.ncbi.nlm.nih.gov/pubmed/21227997

(8) https://www.ncbi.nlm.nih.gov/pubmed/19027757

(9) https://www.ncbi.nlm.nih.gov/pubmed/19027757

(10) https://www.ncbi.nlm.nih.gov/pubmed/19027757

(11) https://www.ncbi.nlm.nih.gov/pubmed/25533906

(12) https://www.ncbi.nlm.nih.gov/pubmed/18021759

(13) http://www.sciencedirect.com/science/article/pii/S016561470900128X

(14) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301686/

(15) https://www.ncbi.nlm.nih.go

(16) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931553/

(17) https://www.ncbi.nlm.nih.gov/pubmed/24900561

(18) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1621151/

(19) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597234/

(20) https://en.wikipedia.org/wiki/Palmitoylethanolamide

(21) https://www.ncbi.nlm.nih.gov/pubmed/9685157

(22) https://www.ncbi.nlm.nih.gov/pubmed/11426841

(23) https://www.ncbi.nlm.nih.gov/pubmed/8739213

(24) https://www.ncbi.nlm.nih.gov/pubmed/21857095

(25) https://www.ncbi.nlm.nih.gov/pubmed/19897346

(26) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931553/

(27) https://examine.com/supplements/agmatine/

(28) https://en.wikipedia.org/wiki/Agmatine

(29) https://wwwhttps://www.ncbi.nlm.nih.gov/pubmed/19538988ncbi.nlm.nih.gov/pubmed/19538988

(30) https://en.wikipedia.org/wiki/Kava

(31) http://www.umm.edu/health/medical/altmed/herb/kava-kava

(32) https://www.ncbi.nlm.nihttps://www.ncbi.nlm.nih.gov/pubmed/22525682.gov/pubmed/22525682

(33) https://www.ncbi.nlm.nih.gov/pubmed/16118355

(34) https://en.wikipedia.or

(35) https://en.wikipedia.org/wiki/Caryophyllene

(36) https://en.wikipedia.org/wiki/Caryophyllene

(37) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931553/

(38) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931553/

(39) http://www.pnas.org/content/105/26/9099.long

(40) http://www.europeanneuropsychopharmacology.com/article/S0924-977X(13)00302-7/abstract

(41) http://www.sciencedirect.com/science/article/pii/S0031938414003400

(42) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2449371/

(43) https://www.ncbi.nlm.nih.gov/pubmed/18574142

(44) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931553/

(45) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931553/

(46) http://www.jbc.org/content/281/20/14192.full.pdf

(47) https://www.ncbi.nlm.nih.gov/pubmed/16142631

(48) http://www.sciencedirect.com/science/article/pii/S0031942214004956

(49) http://www.sciencedirect.com/science/article/pii/S0031942214004956

(50) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931553/

(51) https://www.ncbi.nlm.nih.gov/pubmed/19286662/

(52) https://www.ncbi.nlm.nih.gov/pubmed/19096995/

(53) https://www.ncbi.nlm.nih.gov/pubmed/17159985

(54) https://www.ncbi.nlm.nih.gov/pubmed/8751435

(55) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931553/

(56) www.sacredchocolate.com/docs/sacredpdf/brain-cannabinoids-chocolate.pdf

(57) http://onlinelibrary.wiley.com/doi/10.1111/febs.12125/full#febs12125-bib-0082

(58) https://www.ncbi.nlm.nih.gov/pubmed/19027757

(59) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706194/

(60) https://www.ncbi.nlm.nih.gov/pubmed/18058925/

(61) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706194/

(62) https://www.ncbi.nlm.nih.gov/pubmed/21263035/

(63) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706194/

(64) https://www.ncbi.nlm.nih.gov/pubmed/20439721/

(65) https://www.ncbi.nlm.nih.gov/pubmed/20348201

(66) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(67) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(68) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055381/

(69) http://www.leafsciencehttp://

(70) http://www.leafscience.com/2013/11/04/study-memory-benefits-exercise-tied-cannabinoid-system/

(71) http://onlinelibrary.wiley.com/doi/10.1002/hipo.22206/abstract

(72) http://onlinelibrary.wiley.com/doi/10.1002/hipo.22206/abstract

(73) https://www.ncbi.nlm.nih.gov/pubmed/14625449

(74) http://www.os-extra.cannabisclinicians.org/wp-content/uploads/2015/12/ECSSCC-listing.pdf

(75) http://www.os-extra.cannabisclinicians.org/wp-content/uploads/2015/12/ECSSCC-listing.pdf

(76) https://www.ncbi.nlm.nih.gov/pubmed/26438875

(77) http://www.os-extra.cannabisclinicians.org/wp-content/uploads/2015/12/ECSSCC-listing.pdf

(78) http://docs.lib.purdue.edu/dissertations/AAI3444794/

(79) https://www.ncbi.nlm.nih.gov/pubmed/21278728

(80) https://www.ncbi.nlm.nih.gov/pubmed/21278728

(81) https://en.wikipedia.org/wiki/Cannabinoid

(82) https://www.ncbi.nlm.nih.gov/pubmed/18289087

(83) https://en.wikipedia.org/wiki/Cannabinoid

(84) https://www.ncbi.nlm.nih.gov/pubmed/18289087

(85) http://www.sciencedirect.com/science/article/pii/0031942279830253

(86) https://en.wikipedia.org/wiki/Radula_marginata

(87) http://cpb.pharm.or.jp/cpb/200210/c10_1390.pdf

(88) https://www.ncbi.nlm.nih.gov/pubmed/12372871

(89) https://en.wikipedia.org/wiki/Cannabinoid

(90) https://www.ncbi.nlm.nih.gov/pubmed/18289087

(91) https://www.ncbi.nlm.nih.gov/pubmed/23008748

(92) https://www.ncbi.nlm.nih.gov/pubmed/27554802

(93) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2241751/

(94) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(95) http://www.nature.com/cdd/journal/v22/n10/full/cdd201511a.html

(96) https://www.ncbi.nlm.nih.gov/pubmed/21749363

(97) https://www.ncbi.nlm.nih.gov/pubmed/2165569

(98) https://www.ncbi.nlm.nih.gov/pubmed/1718258

(99) https://www.ncbi.nlm.nih.gov/pubmed/21295074

(100) http://www.leafscience.com/2013/11/04/study-memory-benefits-exercise-tied-cannabinoid-system/

(101) https://en.wikipedia.org/wiki/Anandamide

(102) https://www.ncbi.nlm.nih.gov/pubmed/9285589

(103) https://www.ncbi.nlm.nih.gov/pubmed/9915812

(104) http://www.nature.com/cdd/journal/v22/n10/full/cdd201511a.html

(105) https://www.ncbi.nlm.nih.gov/pubmed/21749363

(106) https://www.ncbi.nlm.nih.gov/pubmed/8751435

(107) https://www.ncbi.nlm.nih.gov/pubmed/9285589

(108) http://www.ncbi.nlm.nih.gov/pubmed/18404144

(109) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(110) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(111) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(112) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(113) http://thelancet.com/journals/lancet/article/PIIS0140-6736(10)60935-X/fulltext

(114) http://www.nel.edu/pdf_/25_12/NEL251204R02_Russo_.pdf

(115) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(116) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(117) http://www.leafscience.com/2013/11/04/study-memory-benefits-exercise-tied-cannabinoid-system/

(118) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(119) https://www.ncbi.nlm.nih.gov/pubmed/16224541

(120) https://www.ncbi.nlm.nih.gov/pubmed/16037095

(121) http://www.jci.org/articles/view/25509

(122) http://www.leafscience.com/2013/11/04/study-memory-benefits-exercise-tied-cannabinoid-system/

(123) https://www.ncbi.nlm.nih.gov/pubmed/15044630

(124) http://www.ncbi.nlm.nih.gov/pubmed/21480865

(125) https://www.ncbi.nlm.nih.gov/pubmed/10716447

(126) https://www.ncbi.nlm.nih.gov/pubmed/11156943

(127) https://www.ncbi.nlm.nih.gov/pubmed/8569415

(128) https://www.ncbi.nlm.nih.gov/pubmed/9813364

(129) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(130) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(131) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(132) http://www.

(133) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(134) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(135) https://www.ncbi.nlm.nih.gov/pubmed/22265864

(136) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(137) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(138) http://thelancet.com/journals/lancet/article/PIIS0140-6736(10)60935-X/fulltext

(139) http://www.nel.edu/pdf_/25_12/NEL251204R02_Russo_.pdf

(140) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(141) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(142) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(143) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817535/

(144) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(145) https://www.ncbi.nlm.nih.gov/pubmed/15044630

(146) http://www.ncbi.nlm.nih.gov/pubmed/21480865

(147) https://www.ncbi.nlm.nih.gov/pubmed/10716447

(148) https://www.ncbi.nlm.nih.gov/pubmed/11156943

(149) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(150) https://www.ncbi.nlm.nih.gov/pubmed/8569415

(151) https://www.ncbi.nlm.nih.gov/pubmed/9813364

(152) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

(153) http://www.nel.edu/pdf_/25_12/NEL251204R02_Russo_.pdf

(154) http://www.nel.edu/pdf_/25_12/NEL251204R02_Russo_.pdf

(155) https://www.ncbi.nlm.nih.gov/pubmed/22311129

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer